
Archetypes Introduction
Archetypes: Constraint-based Domain Models
for Future-proof Information Systems

Thomas Beale
Deep Thought Informatics Pty, Ltd

Mooloolah, Qld, Australia
(thomas@deepthought.com.au)

OOPSLA 2002 workshop on behavioural semantics.

Abstract
Most information systems today are built using “single-level” methodologies, in which both
informational and knowledge concepts are built into one level of object and data models. In
domains characterised by complexity, large numbers of concepts, and/or a high rate of defini-
tional change, systems based on such models are expensive to maintain and usually have to be
replaced after a few years. However, a two-level methodology is possible, in which systems
are built from information models only, and driven at runtime by knowledge-level concept
definitions, or “archetypes”. In this approach, systems can be built more quickly and last
longer, whilst archetypes are authored directly by domain specialists, rather than IT personnel.
Executed properly, the approach has the potential for creating future-proof systems and infor-
mation. Work in the medical informatics domain on electronic health records (EHRs) has
shown that a two-level methodology is implementable, makes for smaller systems, and
empowers domain users.

Introduction
Many of today’s information systems are developed in such a way that the domain concepts
which the system is to process are hard-coded directly into its software and database models.
While this “single-level” approach may allow for relatively quick development, the usual leg-
acy in domains characterised by complexity, size, and high rate of concept change, is systems
which are expensive to modify and extend, and consequently have a limited lifespan. In many
such systems (particularly those developed in relational and/or SQL- and older programming
languages) a particular shortcoming is the non-explicit (i.e. implied) expression of domain
concepts, because the programming and database formalisms can express models only in the
simplest data attribute terms.

With no explicit formal model available which developers can reason about or extend as needs
change, the ability of software and databases to keep up with their requirements is limited.
Even in more object-oriented systems, where the model is clear, a basic problem remains: the
software can never be “finished”, since new and changed domain concepts will always be
appearing, forcing continual rebuilding, testing and re-deployment of systems. If changes are
not made, the system suffers creeping obsolescence, and as a result, diminishing utility over
time. (It has to be said in any case, that in many object-oriented systems, domain processes,
page 1

Copyright © 2002 Thomas Beale

email: thomas@deepthought.com.au web: www.deepthought.com.au

Introduction Archetypes
workflows, enterprise concerns and component arcitectures are not well separated, as they
would be if an RM/ODP methodology were followed).

As a consequence of these shortcomings, not only do many information systems today not
serve their local users well in the long term, they also exhibit limited interoperability. Typi-
cally, they are only interoperable if they (i.e. their relevant vendors or development organisa-
tions) subscribe to the same formal model of information or services, i.e., they are
standardised or productised.

In many domains, both the total number of concepts and the rate of change is high; in health
for example, there are thousands of constantly-changing concepts. For example, the
SNOMED [35.] medical termset codes some 350,000 atomic concepts and over 1 million rela-
tionships. Change factors in medicine have been characterised by Rector [19.] as follows:

Not only is medicine big, it is open-ended:

1. In breadth, because new information is always being discovered or becoming
relevant

2. In depth, becase finer-grained detail is always being discovered or becoming
relevant

3. In complexity, because new relationships are always being discovered or
becoming relevant.

A different approach is needed, predicated on an idea of the world as a changing place, not a
static one in which changes to requirements can somehow be regarded as exceptional. The
approach proposed here is a rigorous knowledge-modelling one, and is founded on the basic
tenet of the separation of knowledge and information levels in information systems. The defi-
nitions of these terms used here are as follows.

Information: statements about specific entities. For example, the statement “Gina Smith
(2y) has an atrial septal defect, 1 cm x 3.5 cm” is a statement about Gina Smith, and
does not apply to other people in general.

Knowledge: statements which apply to all entities of a class, e.g. the statement “the atrial
septum divides the right and left atrial chambers of the human heart”, which might
be found in a medical knowledge-base.

The term archetype is used to denote knowledge level models which define valid information
structures. Archetypes serve various purposes:

• To enable users in a domain to formally express their concepts.

• To enable information systems to guide and validate user input during the creation
and modification of information at runtime, guaranteeing that all information
“instances” conform to domain requirements.

• To guarantee interoperability at the knowledge level, not just the data structure level.

• To provide a well-defined basis for efficient querying of complex data.

A re-conception of information system engineering based on two-level modelling is a possibil-
ity for achieving widespread, knowledge-level interoperability. This paper describes the basis
for such a methodology.
page 2

Copyright © 2002 Thomas Beale

email: thomas@deepthought.com.au web: www.deepthought.com.au

Archetypes Existing Methodologies
Existing Methodologies
Before considering information system development methodologies, it is worth stating the
primary purpose of an information system in the terms used here:

the creation and processing of instances of business entities

Here, “business entities” means the types understood by the system, such as PERSON,
ORDER, or PACKET; “instances” means actual occurrences of such types, usually in the
form of the structured data representing a particular PERSON, ORDER or PACKET. (The
term “domain concept” is also used here, to denote business entities but also more abstract
entities which appear in models but do not have direct data instances.)

The Single-Level Approach
Most published information system development methodologies (e.g. the object-oriented
methodologies of Booch [6.], Jacobsen [14.], Martin and Odell [17.], Rumbaugh et al [21.],
Walden and Nerson [22.] and numerous derivative works, UML-related publications, and
relational texts based on e.g. Date [8.]) work on the premise of a single level of “concrete”
models, or what is called here a “single level” approach. That is to say, business entities are
modelled directly in software and database models, via an iterative process of writing use
cases, finding classes, and building models which will eventually become software. Most
information systems today are constructed on this basis, which is illustrated in FIGURE 1.

The system shown on the left side of the figure creates information as instances of business
entities, stores it, transmits it, and formats it for human use. The database, software and graph-
ical user interface are developed based on an object-oriented (OO) or entity-relationship (ER)
model, formally describing the semantics. In typical relational developments, concepts are
encoded in the relational schema and into program code or stored procedures. In object-ori-
ented systems, they are expressed as an object model in a formalism such as UML. Many sys-
tems use a combination of approaches, with object-oriented models being implemented in
software, and also translated into relational schemas, resulting in the well-known “impedence
mismatch”. As a result, in a majority of object-oriented and relational systems, the semantic

FIGURE 1 Single Level Methodologies

Software BIG

information

info & domain

define

implemented in
concepts

GUI App

user

developer
RDBMS devt

OO devt

model

BIG
schema

communication

runtime
system

technical development
environment

data
store

domain knowledge
environment

domain
specialists

ad hoc
discussion
page 3

Copyright © 2002 Thomas Beale

email: thomas@deepthought.com.au web: www.deepthought.com.au

Existing Methodologies Archetypes
concepts are nearly all hard-coded. For instance, the concept PERSON will be modelled with
explicit attributes and relationships for name, address, sex, date of birth and so on, and each
sub-concept will be recursively modelled in a similar way.

Exceptions to this approach are systems in which business specifications are well separated
and then engineered as explicit (editable) rules governing the runtime behaviour of systems.
Authors such as Kilov [16.], Bjørner, Simmonds, Ash and in medical informatics, Blobel [5.]
have extensively treated this area, in most cases using the explicit separation of concerns of
RM/ODP.

Shortcomings of the Single Level Approach
For situations where the number, complexity and rate of of definitional change of entities is
small (i.e. low spatial and temporal variability) the single-level approach may well be the most
economic one. However, in large, information-rich domains subject to constant change, such
as clinical medicine, high-tech manufacturing and defence, single-level modelling has a nega-
tive consequences, including:

• The model encodes only the requirements found during the current development,
along with best guesses about future ones.

• Models containing both generic and domain concepts in the same inheritance hier-
archy are problematic: the model can be unclear since very general concepts may be
mixed with very specific ones, and later specialisation of generic classes is effec-
tively prevented.

• It is often difficult to complete models satisfactorily, since the number of domain
concepts may be large, and ongoing requirements-gathering can lead to an explosion
of domain knowledge, all of which has to be incorporated into the final model.

• There may be a problem of semantic fitness. It is often not possible to clearly model
domain concepts directly in the classes, methods and attributes of typical object for-
malisms; more powerful constraint-oriented languages may be needed.

• Modelling can be logistically difficult to manage, due to the fact that two types of
people are involved: domain specialists, and software developers. Domain specialists
are forced to express their concepts in a software formalism such as UML, or else
participate in ad hoc discussions with developers. Likewise, software developers
have difficulty in dealing with numerous concepts they don’t understand. The typical
result is a substandard modelling process in which domain concepts are often lost or
incorrectly expressed, and software which doesn’t really do what users want.

• Introduction of new concepts requires software and database changes, and typically
rebuilding, testing and redeployment, which are expensive and risky. If conversion of
legacy data and/or significant downtime is also involved, the costs can become a
serious problem.

• Interoperability is difficult to achieve, since each communicating site must continu-
ally either make its models and software compatible with the others, or else continu-
ally upgrade software converters or bridges. Heterogeneous (multi-vendor)
computing environments where the software has been created using single-level
methodologies typically do not interoperate well, because of the complexity of mod-
els underlying each system.
page 4

Copyright © 2002 Thomas Beale

email: thomas@deepthought.com.au web: www.deepthought.com.au

Archetypes Existing Methodologies
Even when some level of interoperability is initially achieved, it generally degrades
over time, due to systems diverging from agreed common models, as they follow
differing local requirements. See [20.] for a discussion of interoperability issues.

• Standardisation is difficult to achieve. With large domain models, it is logistically
and technically (and often politically) difficult for different vendors and users to
agree on a common model. Lack of standardisation not only makes interoperability
difficult to achieve, it makes automated processing (such as decision support or data
mining) nearly impossible, since there are almost no general assumptions such sys-
tems can make about the models underlying the queried systems.

In summary, information systems in domains with a large, complex or constantly changing
number of concepts, built using single-level methodologies exhibit the following characteris-
tics:

• large class models and database schemas;

• long-term unmaintainability and eventual obsolescence.

The Problem of Knowledge
The primary reason why single-level modelling is not a good long-term solution in domains
where information is complex and volatile is because information and knowledge are con-
flated. Typical examples of information and related knowledge are:

• “Gina Smith has a resting BP of 110/80” (information) and “Blood Pressure consists
of two quantitative data items, called ‘systolic’ and diastolic’ (each with units =
mmHg), and an optional ‘protocol’ indicating position of patient, instrument used
and type of cuff” (knowledge);

• “PERSON_1234: ‘David Chang’, 15/Sep/1972, Male, ‘Hong Kong’, ...” (information)
and “PERSON consist of name: STRING [1], date_of_birth: DATE [1], sex: CODED_TERM
[1], place_of_birth: STRING [1], occupation: STRING [0..n], employment:
PARTY_RELATION [0..n]....”

In the examples above, the knowledge statements hold true for all individual entities of their
class. Despite this, in many domains, knowledge entities can be volatile. Thus, the definitions
of “PERSON” and even “Blood Pressure” can change in time (particularly the former - demo-
graphic models are a prime example of volatility, where definitions of name, address, con-
tacts, relationships etc are nearly impossible to standardise). Not all knowledge is volatile, of
course - a semantic network describing basic human anatomy and physiology is likely to be
quite stable. Volatility is not the only problem. The number of knowledge entities in a domain
may be vast, as implied by the size of clinical terminologies such as SNOMED [35.] and
UMLS [37.], each numbering in the millions of entries.

Unfortunately, the one thing we most require of an information system if it is to be economic
in the long term is stability, the opposite of volatility. Yet, due to the use of single-level meth-
odologies, most information systems today are not very stable, for two reasons. Firstly,
because knowledge concepts are directly encoded into the models used to build the software
and databases - they become the names and attributes of classes, tables and columns. Worse,
every data instance created is built according to such fragile models. In other words, not only
software correctness but informational validity are directly dependent on the definitions of
knowledge entities from which the system is constructed. Changes in the definition of knowl-
edge entities at least require that the system be rebuilt, re-tested and re-deployed, and may
page 5

Copyright © 2002 Thomas Beale

email: thomas@deepthought.com.au web: www.deepthought.com.au

A Two Level Methodology Archetypes
involve expensive data migration or validation. The second factor leading to instability is the
sheer size of models which reduces maintainability.

A Two Level Methodology

Overview
An alternative approach is to separate the semantics of information and knowledge into two
levels of model. The former is the one familiar to most developers - the level of software
object models and database schemas, denoted here by the term reference model (RM) - and is
used to build information systems. It must be small in size, in order to be comprehensible, and
contain only non-volatile concepts in order to be maintainable. The second level is the knowl-
edge level, requiring its own formalism(s) and structure, and is where the numerous, volatile
concepts of most domains are expressed. FIGURE 2 depicts such a scheme graphically. In the
centre is an information system, which stores information and communicates it with other sys-
tems. The software and database models of the system are small and non-volatile, shown on
the right, whilst knowledge concepts are shown in the “concept library” on the left. The formal
models or languages of which such concepts are instances are included on the right side, in the
technical development environment.

The key consequences of using a two-level methodology are as follows.

Future-proof Systems and Data: software, databases, and data now depend only on
small, non-volatile models. They can thus be developed and deployed quickly,
without waiting for the knowledge concepts to be defined, and they will rarely need
to be changed. This radically changes the economics of information systems.

Domain Empowerment: technical models are developed by software engineers, whilst
knowledge concept definitions are developed by the people who know about them -
domain specialists. The two development processes are disengaged, and domain

FIGURE 2 A Two-level Methodology

data
store

System Model

schema
communication

information

defines

implemented

runtime
system

technical development
environment

GUI App

user

Reference

domain knowledge
environment

concept

domain

library

smallknowledge

small

specialists

Knowledge
Model/

in Language
page 6

Copyright © 2002 Thomas Beale

email: thomas@deepthought.com.au web: www.deepthought.com.au

Archetypes A Two Level Methodology
specialists are empowered to directly produce artifacts which will control how their
information systems function.

Knowledge-level Interoperability: if models at both information and knowledge levels
are shared, systems may interoperate not only at the data level, but also at the
concept level.

Intelligent Querying: knowledge-level models can be used to draw conclusions about
the possible shape and contents of data in advance, allowing for highly efficient
querying.

Executed correctly, a two-level modelling methodology stands to radically change the eco-
nomics and quality of information systems. As far as is known, none of the existing software
development methodologies takes a two-level approach, which is somewhat surprising, since
the distinction between knowledge and information is well understood in artificial intelligence
and ontology circles; the concept of “data-driven” systems is also not new. Of texts reviewed,
only Fowler’s “Analysis Patterns” [10.] implies two-level thinking, although its treatment of
the knowledge level is ad hoc. Other authors who may have something to contribute include
Wisse (“Metapattern” [23.]) and Forman and Danforth (“Putting Metaclasses to Work” [9.]).
Previous work in Health Standardisation which foreshadows a two-level approach includes
the CEN health record pre-standard ENV 13606:1999 Part 2 [24.].

The Challenges
The challenges in devising a two-level methodology include:

• knowing how to perform the separation of concepts in a domain of interest (e.g. as
specified in a requirements document) into two levels;

• knowing how to structure the models at each level;

• understanding the formal relationship between the two model levels;

• understanding how to engineer systems based on the first level, but which are aware
of the second level.

These are quite profound questions. While they do not have trivial answers in any particular
case, the governing principles are fairly easy to grasp.

The Information Level
As stated above, the reference model should consist of a relatively small number of non-vola-
tile concepts (i.e. classes). The first challenge is that of finding these classes. The starting
point is, as in single-level modelling, an informal description of the concrete entity types
which the system is to process, typically compiled during requirements capture. Consider for
example, a demographic system for hospitals, which must represent the following kinds of
entities:

• Person

• Health Care Facility

• Health Care Professional (a role of a person who performs care delivery)

• Health Care Agent (a role of a person, software, or device which performs clinical
actions)

• Staff Member, Administrator

• Patient, Inpatient, Outpatient
page 7

Copyright © 2002 Thomas Beale

email: thomas@deepthought.com.au web: www.deepthought.com.au

A Two Level Methodology Archetypes
• Surgeon, Consultant, Specialist, GP, Nurse, Intern, Student, Visitor, Family Member

• Pathology Laboratory

• Contact details, address, etc

It is not hard to see that a large concrete model could be constructed based on these concepts.
However, it is also not hard to see that if the aim is to build an information system which is
future-proof and interoperable, only some of the above concepts should be concretely mod-
elled, characterised as those which are known to be valid for all instances, and constant in
time. There are in fact far fewer concepts satisfying this profile: Person, Organisation, Role,
and a few others, because the possible data attributes of most demographic types are very var-
iable, even for the common attributes of name, gender, address, date of birth and so on. In gen-
eral, only reasonably abstract classes will be defined in the reference model, rather than
concrete business entity types.

An appropriate reference model is illustrated in FIGURE 3 (derived from the openEHR demo-
graphic model [4.]) and is built on only those classes, relationships and attributes which are
truly non-volatile in time. Accordingly, it was judged in the analysis that all PARTYs would
always have a legal identity, possibly other identities, roles, contacts and so on. However, only
a small number of facts are concretely modelled in this way - most of the classes in this model
include the attribute details: COMPOUND, which is the generic part of the model. The COM-

POUND/ELEMENT pattern is a simple node/arc structure which allows any logical structure to be
encoded (it could well have been a directed acyclic graph, to be more general). The special
class LOCATABLE has been added to ensure that every object in an instance network has a
name, making it locatable by a URL-style path. The class DATA_VALUE has numerous subtypes
such as TEXT, QUANTITY, DATE, TIME, and so on.

The Knowledge Level
With just a reference model, the ability exists to create information which is partly structured,
partly unstructured. The problem now is to define the semantics of those entities not included
in the reference model, such as Patient and Health Care Agent. Stated in general terms, a first
principle of defining models in the knowledge level is:

1. knowledge-level models define whole, distinct business entities.

Before proceeding to show how this can be done, it is worth once again recalling the primary
purpose of an information system: to create and process instances of business entities. The
only means available for creating instances is the reference model - all data is constructed
from instances of this model and nothing else. The technical problem is therefore to show how
data representing entities not concretely modelled in the reference model can be constructed.

The basic premise is fairly clear: any business entity can be represented using instances of the
reference model classes, with instances of the generic part (COMPOUND/ELEMENT in this case)
expressing further structure as required. The generic type attribute in most classes enables
objects to be named according to what they really are (e.g. “Australian Consumer”), rather
than being understood only by the class name (e.g. “ROLE”). A definition of a business entity
like “Australian Consumer” (e.g. according to AS5017) could be expressed as a template, i.e.
a predefined instance structure with some attributes filled in. A fragment of such a template is
illustrated using a UML instance diagram in FIGURE 4.
page 8

Copyright © 2002 Thomas Beale

email: thomas@deepthought.com.au web: www.deepthought.com.au

Archetypes A Two Level Methodology
The Problem of Variability
Initially it seems as if the template approach would work - it provides a default structure,
names, and leaves values blank, as they should be. However there are shortcomings as soon as
one considers what needs to be expressed. For a start, the model for Australian Consumers
expressed in AS5017 includes cardinalities of relationships and attributes. It is also clear that
the types of the value attributes of the ELEMENT objects should be stated. In some cases, it may
also be necessary to make statements about names or actual values, for example that a date
value is greater than a certain value, that a quantity must be in a certain range and so on. In
general, the kinds of semantics needed in knowledge models are those of constraint - state-
ments which say how instances of a reference model should be constrained to form a valid
business entity of some kind. A basic list of required constraint semantics includes:

• constraints on names;

• constraints on types e.g. of the value attribute;

• constraints on structure; e.g. attribute and relationship cardinalities;

• constraints on relationships between attributes;

PARTY
type[1]: TEXT
other_details[0..1]: COMPOUND

PARTY_IDENTITY
purpose[1]: TEXT
value[1]: COMPOUND

CONTACT_DETAILS
purpose[1]: TEXT
time_validity[1]:
INTERVAL<DATE>

other_

0..* contacts0..*

ADDRESS
type[1]: TEXT
value[1]: COMPOUND

addresses

1..*

legal_
1

PERSONORGANISATION

ROLE
type[1]: TEXT
details[0..1]: COMPOUND
time_validity[1]:
INTERVAL<DV_DATE>

ROLE_
RELATIONSHIP
type[1]: TEXT
details[0..1]: COMPOUND
time_validity[1]:
INTERVAL<DATE>

contacts0..*identity
identities

0..*
roles

1
party

0..*
relationships

source

target

1

1..*

COMPOUND

ITEM

ELEMENT

items

1..*

value 1

FIGURE 3 A Demographic Reference Model

LOCATABLE
name[1]: TEXT
meaning[1]: TEXT

DATA_VALUE
page 9

Copyright © 2002 Thomas Beale

email: thomas@deepthought.com.au web: www.deepthought.com.au

A Two Level Methodology Archetypes
• validity constraints, including invariants.

A second principle of models in the knowledge level can thus be stated as:

2. knowledge-level models express constraints on instances of an underlying reference
model.

Archetypes
The name Archetype is introduced to denote a model defining some domain concept, expressed
using constraints on instance structures of an underlying reference model. (The Concise
Oxford Dictionary defines an archetype as “an original model, prototype or typical speci-
men”). The word “archetype” indicates a model with significantly more expressive power than
a fixed template.

Consideration of the notion of constraints on instances of a reference model leads to an
approach for designing a formal model of archetypes, or equivalently, a “language of arche-
types”. Any given archetype, such as for “Australian Consumer” is an instance of this model.

It has already been said that an archetype model/language allows statements constraining
instances of a reference model to be made. One way to formalise this would be, for each class
XXX in a reference model, to create a class C_XXX in the archetype model whose meaning is
“constraint on objects of type XXX”. FIGURE 5 illustrates an example; in a reference model,
suppose there is a class QUANTITY. In the corresponding archetype model, we will create a
class C_QUANTITY, whose instances would act as constraint statements on instances of QUAN-
TITY.

An instance of QUANTITY is a datum such as 110 mm[Hg] (units.property = “pres-

sure”), as one would expect to find in a normal information system. An instance of
C_QUANTITY has the semantics of constraint on instances of QUANTITY; such as:

• 0 <= value <= 500, units.name = “mm[Hg]”

{allow any pressure between 0 mm[Hg] and 500 mm[Hg]}

• value >= 0, units.property = “length” {allow any positive-valued length}

PARTY_IDENTITY
name = “Client Name”
purpose = “legal name”

COMPOUND
name = “items”

ELEMENT
name = “Name Title”
value = ????

ELEMENT
name = “Family Name”
value = ????

value items

FIGURE 4 Fragment of template for Business Entity “Client Name”

ELEMENT
name = “Given Names”
value = ????

ELEMENT
name = “Name Suffix”
value = ????
page 10

Copyright © 2002 Thomas Beale

email: thomas@deepthought.com.au web: www.deepthought.com.au

Archetypes A Two Level Methodology
The archetype model on the right-hand side of FIGURE 5 will allow these constraints to be
expressed. C_REAL is modelled as a range of REAL, allowing the range 0 - 500 to be expressed;
C_STRING is modelled using a regular expression, enabling constraints such as “km/h |

m\.s-1 | mph” to be expressed. (Both of these could be modelled in other ways.) The class
C_SINGLE_REL<T> allows constraints on relationship cardinality to be expressed, in this case,
whether QUANTITY.units is mandatory or optional.

An important consequence of the inbuilt variability permitted by archetypes is that more than
one information instance can conform to the one archetype. In other words, the number of
archetypes required to control a large number of variations in information need not be great.
As an example, in the GEHR GPCG project [28.], one archetype was defined for all biochem-
istry results, and one for all microbiology results, even though there are thousands of different
such tests in pathology.

Granularity and Composition
While this approach could be slavishly followed in order to create an entire archetype model
from a reference model (such as the simple demographic one above), some account needs to
be taken of the structural nature of most reference models. Reference models are constructed
not just of classes, but of groups of classes defining domain concepts. In FIGURE 3, for
example, the classes PARTY and its descendants are likely to be considered as defining domain
concepts; PARTY_IDENTITY, ROLE etc might also be considered this way, but the classes ITEM
and descendants, and basic types STRING etc do not define business entities in their own right.
Instead, they are internal objects making up business objects. Another example which makes
this even clearer is the kind of organisational reference model which defines concepts such as
Enterprise, Division, Management Unit, Establishment - each of these will of course have
numerous internal parts defining names and other details. Logically we are led to a third prin-
ciple of knowledge-level models, namely:

3. The granularity and composition of a knowledge-level model corresponds to that of
domain concepts in the reference model.

The consequences of this principle are that distinct archetypes defined for distinct business
entities can be composed to form constraint definitions for aggregated business objects.

FIGURE 5 QUANTITY and C_QUANTITY

QUANTITY
value: REAL

UNITS
property: STRING
name: STRING

units

C_QUANTITY
c_value: C_REAL

C_UNITS
c_property: C_STRING
c_name: C_STRING

0..1

Reference Model Archetype Model

C_REAL
value: RANGE [REAL]

C_STRING
value: STRING
-- regular expression

1
units:

C_SINGLE_REL<..>

C_SINGLE_REL<T>
min_occurrences: INTEGER
max_occurrences: INTEGER
target: T
page 11

Copyright © 2002 Thomas Beale

email: thomas@deepthought.com.au web: www.deepthought.com.au

A Two Level Methodology Archetypes
Ontological Analysis
In more complex domains, domain concepts fall into identifiable levels of abstraction, which
can be expressed as ontologies. In clinical medicine for example, various ontological levels
are recognised, characterised here as follows:

Principles (level 0): an ontology of the language and principles, including principles
relating to subjects like anatomy, parasitology, pharmacology, biochemistry,
psychology, sociology, measurement and so on. This level contains the knowledge of
processes and entities which constitute the generally accepted facts of the domain -
things which are true about all instances of entities (such as the human heart) or
processes (such as fetal development). As such, level 0 knowledge is independent of
particular users of information or processes such as health care or education; we
might say it has no point of view. Medicine is one of the few domains to also have
some domain knowledge in a computable form: it exists in ‘controlled vocabularies’,
or ‘terminologies’, some of which are rich semantic nets such as SNOMED-CT
[35.].

Descriptive (level 1): concepts which are expressed as structural compositions of level 0
elements. Each expresses a tightly cohesive description of an observation, analysis or
prescription of something in the real world (including patient mental state).
Examples of level 1 concepts whose definitions are almost universally accepted
include blood pressure, body mass index, and body part measurement. Pathology
also provides a myriad of level 1 concepts, such as Biochemistry results,
Microbiology results, ECG results, Computerised Axial Tomography scan radiology
results.

Organising (level 2): concepts created by health care professionals in an attempt to make
sense of what might otherwise be a sea of unrelated descriptive items. Their form is
based on the logic of enquiry and reporting used in the domain, and they act as a
navigational aid to both authors and readers of information. Organising concepts are
typically defined according to high-level methodological or process ideas; for
example the “problem-oriented health record” gives rise to a very common
hiererarchical heading structure known as the “problem/SOAP” headings.

Thematic (level 3): coarse-grained collections of information from lower ontological
levels. Includes concepts such as “family history”, “current medications”,
“therapeutic precautions”, “problem list”, “patient contact”, “care plan” and
“pregnancy”.

The above breakdown particularly suits how information is recorded in electronic health
records (EHRs), and has been used as the basis of developing the reference and archetype
models in GEHR [26.], openEHR [34.], and CEN ENV:13606 [24.].

Ontological analysis is the basis of a further principle of two-level modelling:

4. The ontological levels of a domain can be used to structure both reference and
knowledge level models, and are populated by instances of knowledge-level models.
Composition occurs between concepts at each of the levels.

The formal consequence of this principle is that both reference models and their archetype
models explicitly contain ‘root classes’ (i.e. classes representing distinct domain concepts)
corresponding to the ontological levels of the domain. The openEHR EHR reference model
[2.] for example includes five such levels. Accordingly, its archetype model has the same five
levels, and the resulting archetypes define concepts at each level.
page 12

Copyright © 2002 Thomas Beale

email: thomas@deepthought.com.au web: www.deepthought.com.au

Archetypes A Two Level Methodology
Specialisation
A final characteristic of business entities which is usually assumed is that they may be spe-
cialised. For example, Consultant and General Practitioner are specialisations of Health Care
Professional. When such business entities are concretely modelled (in a single-level method-
ology), specialisation is expressed using the object-oriented inheritance relationship. At the
knowledge level, this specialisation relationship is still required, but its semantics will differ
from inheritance, because of the constraint nature of archetypes. One meaningful way to for-
mally define specialisation of archetypes is as follows:

• an archetype B is a specialisation of another archetype A if the data instances which
conform to archetype B also conform to archetype A.

Specialisation leads to the following principle:

5. The specialisation relationship may exist between distinct knowledge-level models.

Approaches to Defining Archetype Languages
A key technical problem to be solved is how to devise a particular (or even a general) arche-
type model/language for a given reference model, since with such a model available, actual
archetypes can be created, and software built. One basic choice available is between syntacti-
cal and structural approaches. Structural and syntax expressions of constraints are semanti-
cally equivalent: the structural form of any set of statements which can be expressed
syntactically can be thought of as the parse-tree output of a program which parses the syntax
form of the statements. The difference between the approaches is that the structural version
appears explicitly in the type system (hence the software), whereas a syntax expression con-
sists of string instances only.

The Model Approach
The semantics of archetypes for a reference model can be expressed in a model form, as
implied in the example in FIGURE 5. This approach has been followed in the electronic
health record projects GEHR [26.] and openEHR [34.], with the latter introducing some syn-
tax as well. Models are easier to develop, since they don’t require the definition of a special
language, but are inherently tied to the type system, and changes mean recompilation.

In the GEHR GPCG projects, the EHR reference model [1.] has an archetype model counter-
part (unpublished) from which an archetype editor was built [25.]. Archetypes produced by
this editor [27.], [28.] were used in runtime systems to perform data creation and validation.
The SynEx project at UCL [36.] also included a reference model, a simple archetype model
and an archetype editor [15.].

The Syntax Approach
Archetype semantics can be defined as a language rather than a model, which introduces more
design-time complexity but may improve runtime flexibility. Nevertheless, the principles
described above should be used for designing the language. Recent work on openEHR arche-
types and HL7 “templates” is exploring the archetype language approach.
page 13

Copyright © 2002 Thomas Beale

email: thomas@deepthought.com.au web: www.deepthought.com.au

The Software Engineering Picture Archetypes
The Software Engineering Picture

Relationships Between Models, Information and Knowledge
It is appropriate at this point to reflect on the big picture, now that some idea of the role of
archetypes and the characteristics of an archetype model/language has been provided. FIG-
URE 6 illustrates the two-level development universe.

On the “information” side is actual information, or what many people think of as “data” - the
raison d’etre of an information system. The structure and semantics of information is defined
by a reference model; information items are “instances” of this model, as per the usual object-
oriented class/object relationship. On the “knowledge” side are archetypes, i.e. knowledge-
level definitions, whose job is to constrain at runtime the structure and semantics of informa-
tion. However, in contrast with the class/instance relationship which constrains the “hard”
aspects of object type, attribute names and types, and function signatures, archetypes constrain
the “soft” aspects of information, namely multiplicities, values of attributes and naming.

Archetypes have their own model (or language), which appears in the top right of the diagram,
and of which archetypes are instances. As alluded to above, this model has a formal relation-
ship with its underlying reference model.

An Analogy
One way to understand archetypes is to imagine that the reference model defines the engineer-
ing specification of LEGO® bricks from which, as every child, and not a few adults know,
anything can be built. The semantics of the RM are analogous to the “semantics” of LEGO
bricks, i.e. the engineering specification of the particular coupling and joining mechanisms
built into the bricks. The set of all possible combinations of a particular set of bricks comprises
a vast construction space. However, most combinations are meaningless - only a tiny propor-
tion of the space consists of the interesting constructions of houses, dogs, and tractors; all
other combinations are “legal” if the bricks are connected correctly, but have no meaning to
us, the users. Likewise, a reference model defines a vast informational construction space,
only a small proportion of which contains combinations valid in the domain.

Reference Archetype
Model/Language

information

instances

archetypes

instances

semantics of
constraint

constrain at

FIGURE 6 Archetype Model Meta-architecture

runtime

Model

INFORMATION KNOWLEDGE
page 14

Copyright © 2002 Thomas Beale

email: thomas@deepthought.com.au web: www.deepthought.com.au

Archetypes The Software Engineering Picture
Consider further that the valid LEGO brick constructions cannot be divined from the bricks
themselves: they come from fertile imaginations, or else printed plans included in LEGO
packages. It is often the case that small variations and optional add-ons are suggested for the
one model; this means that the set of all possible variants on the model form a constellation of
brick combinations corresponding to the one plan, or model definition. Such plans are the
LEGO version of archetypes.

The Relationship Between Models and Software
FIGURE 7 extends FIGURE 6 by including the generic software component types that occur
in a two-level development methodology.

In this diagram, several software components are shown, being based on the reference and/or
archetype models. These are:

Archetype Editor: a GUI application for creating new archetypes. This is based on the
archetype class model.

Validator: any component which creates or manipulates valid data using archetypes.
This is based on the reference and archetype model classes.

Browser: a generic data browser or editor can be built, based solely on a reference
model, although smart browsers and editors are built using the archetype model as
well.

This approach is homologous to approaches in which a formal language (e.g. object-Z) is used
to write concept specifications; here the archetype model is semantically equivalent to such a
language. However the strength of this approach is that archetypes are instances in an object-
oriented system implementation: they can be created and manipulated by GUI tools, altered as
desired without ever changing database schemas, or the reference or archetype models.

The constraint relationship between the reference and archetype models is a new kind of for-
mal relationship, and has not been treated in the object-oriented literature to date. However, it

Reference Archetype
Model

information

instances

archetypes

instances

constrain at

FIGURE 7 Archetype Software Meta-architecture

runtime

Model

author

implemented by

EDITOR

readcreate

VALIDATORBROWSER

retrieve

implemented byimplemented byimplemented by

semantics of
constraint

ARCHETYPE
page 15

Copyright © 2002 Thomas Beale

email: thomas@deepthought.com.au web: www.deepthought.com.au

References Archetypes
is not technically difficult to devise such a relationship, and it has been implemented in the
GEHR [26.] and SynEx [36.] projects .

References

Publications

1. Beale T, Heard S. The GEHR Object Model Architecture. 1999, the GEHR project
(available at
http://www.gehr.org/technical/model_architecture/gehr_architecture.html).

2. Beale T, Heard S, Kalra D, Lloyd D. The openEHR EHR Reference Model. At
http://www.openehr.org/productRM.htm.

3. Beale T, Heard S, Kalra D, Lloyd D. The openEHR Data Types Reference Model. At
http://www.openehr.org/productDT.htm.

4. Beale T, Heard S, Kalra D, Lloyd D. The openEHR Demographic Reference Model. At
http://www.openehr.org/productDM.htm).

5. Blobel B. Application of the component paradigm for analysis and design of advanced
health system architectures. In International Journal of Medical Informatics 60 (2000)
281–301.

6. Booch G. Object-oriented Analysis and Design. 1994, Benjamin Cummings.

7. Chandrasekaran B, Josephson J R, Benjamins V R. The Ontology of Tasks and Methods.
Available at http://ksi.spuds.cpsc.ucalgary.ca/KAW/KAW98/chandra/.

8. Date C J. An Introduction to Database Systems. Volume I. 5th Ed. 1990 Addison
Wesley.

9. Forman I R, Danforth S H. Putting Metaclases to Work. 1999 Addison Wesley
Longman.

10. Fowler M. Analysis Patterns: Reusable Object Models. 1997, Addison Wesley
Longman.

11. Fowler M. UML Distilled. 2nd Ed. 2000 Addison Wesley Longman.

12. Genesereth, M. R., & Fikes, R. E. (1992). Knowledge Interchange Format, Version 3.0
Reference Manual. Technical Report Logic-92-1, Computer Science Department,
Stanford University.

13. Gruber, Thomas R. Toward Principles for the Design of Ontologies Used for Knowledge
Sharing. 1993, Stanford Knowledge Systems Laboratory.

14. Jacobsen I, Christerson M, Jonsson P, Overgaard G. Object-Oriented Software
Engineering: A Use Case Driven Approach. 1992, Addison Wesley, Reading MA.

15. Kalra D, Austin A, O’Connor A, Patterson D, Lloyd D, Ingram D. Information
Architecture for a Federated Health Record Server. In: Mennerat F. (ed) Electronic
Health Records and Communication for Better Health care; 47-71. IOS Press,
Amsterdam, 2002. ISBN 1 58603 253 4 .
page 16

Copyright © 2002 Thomas Beale

email: thomas@deepthought.com.au web: www.deepthought.com.au

http://www.gehr.org/technical/model_architecture/gehr_architecture.html
http://www.openehr.org/productDT.htm
http://www.openehr.org/productDM.htm
http://www.openehr.org/productRM.htm
http://spuds.cpsc.ucalgary.ca/KAW/KAW98/chandra/

Archetypes References
16. Kilov H. Business Specifications: The Key to Successful Software Engineering.
Prentice Hall.

17. Martin J, Odell J J. Object-oriented Analysis and Design. 1992, Prentice Hall,
Englewood cliffs, NJ.

18. Meyer B. Object-Oriented Software Construction. 2nd Ed. 1997, Prentice Hall.

19. Rector, A. L. Clinical Terminology: Why Is It So Hard? Yearbook of Medical
Informatics 2001.

20. Renner S A, Rosenthal A S, Scarano J G. Data Interoperability: Standardization or
Mediation. 1996, IEEE. Available at
http://computer.muni.cz/conferen/meta96/renner/data-interop.html.

21. Rumbaugh J, Blaha M, Premerlani W, Eddy F, Lorensen W. Object-oriented Modelling
and Design. 1991, Prentice Hall.

22. Walden K, Nerson J. Seamless Object-oriented Software Architecture. 1995, Prentice
Hall.

23. Wisse P. Metapattern: Context and Time in Information Models. 2001 Addison-Wesley.

Resources

24. CEN TC 251 EHCRA standards. See http://www.centc251.org/.

25. DSTC GEHR Archetype Editor. See http://www.openehr.org/DSTC1.htm.

26. GEHR (Good Electronic Health Record). See http://www.gehr.org.

27. GEHR Complete list of archetypes.
http://www.gehr.org/gpcg/Archetypes/List_archetypes.htm.

28. GEHR XML archetypes.
http://www.gehr.org/technical/archetypes/gehr_archetypes_xml.html.

29. GEHR/OACIS data transformation project. See
http://www.gehr.org/gpcg/DataTransformation.htm

30. GEHR/OACIS archetypes. See
http://www.gehr.org/gpcg/OACIS/OacisArchetypes.htm.

31. GEHR (Good European Health Record). See
http://www.chime.ucl.ac.uk/HealthI/GEHR/Deliverables.htm.

32. HL7 version 3. See http://www.hl7.org

33. ICD (International Classification of Diseases). See http://www.who.int/whosis/icd10/.

34. openEHR. See http://www.openEHR.org/, http://www.openehr.org/doculist.htm.

35. SNOMED (Systematized Nomenclature for Medicine). See http://www.snomed.org/.

36. SynEx project, UCL. See http://www.chime.ucl.ac.uk/HealthI/SynEx/.

37. UMLS (Unified Medical Language System). See
http://www.nlm.nih.gov/research/umls/.
page 17

Copyright © 2002 Thomas Beale

email: thomas@deepthought.com.au web: www.deepthought.com.au

http://www.openEHR.org/
http://computer.muni.cz/conferen/meta96/renner/data-interop.html
http://www.openehr.org/doculist.htm
http://www.gehr.org/gpcg/DataTransformation.htm
http://www.gehr.org/gpcg/OACIS/OacisArchetypes.htm
http://www.gehr.org/gpcg/Archetypes/List_archetypes.htm
http://www.gehr.org/technical/archetypes/gehr_archetypes_xml.html
http://www.openehr.org/DSTC1.htm
http://www.centc251.org/
http://www.gehr.org
http://www.chime.ucl.ac.uk/HealthI/GEHR/Deliverables.htm
http://www.hl7.org
http://www.who.int/whosis/icd10/
http://www.snomed.org/
http://www.chime.ucl.ac.uk/HealthI/SynEx/
http://www.nlm.nih.gov/research/umls/

References Archetypes
page 18

Copyright © 2002 Thomas Beale

email: thomas@deepthought.com.au web: www.deepthought.com.au

	Archetypes: Constraint-based Domain Models for Future-proof Information Systems
	Abstract

	Introduction
	Existing Methodologies
	The Single-Level Approach
	FIGURE 1 Single Level Methodologies

	Shortcomings of the Single Level Approach
	The Problem of Knowledge

	A Two Level Methodology
	Overview
	FIGURE 2 A Two-level Methodology

	The Challenges
	The Information Level
	FIGURE 3 A Demographic Reference Model

	The Knowledge Level
	FIGURE 4 Fragment of template for Business Entity “Client Name”
	The Problem of Variability

	Archetypes
	FIGURE 5 QUANTITY and C_QUANTITY
	Granularity and Composition
	Ontological Analysis
	Specialisation

	Approaches to Defining Archetype Languages
	The Model Approach
	The Syntax Approach

	The Software Engineering Picture
	Relationships Between Models, Information and Knowledge
	FIGURE 6 Archetype Model Meta-architecture
	An Analogy

	The Relationship Between Models and Software
	FIGURE 7 Archetype Software Meta-architecture

	References
	Publications
	Resources

