
G
i
T

H
a

b

a

A

R

R

2

A

K

C

S

U

o

A

H

1

I
t
a

U
T

(
0
d

c o m p u t e r m e t h o d s a n d p r o g r a m s i n b i o m e d i c i n e 9 5 (2 0 0 9) 213–226

journa l homepage: www. int l .e lsev ierhea l th .com/ journa ls /cmpb

eneric screen representations for future-proof systems,
s it possible?
here is more to a GUI than meets the eye

elma van der Lindena,∗, Tony Austinb, Jan Talmona

School for Public Health and Primary Care: Caphri, Maastricht University, Maastricht, The Netherlands
CHIME, University College London, United Kingdom

r t i c l e i n f o

rticle history:

eceived 18 July 2008

eceived in revised form

February 2009

ccepted 15 March 2009

eywords:

omputerized Medical Record

ystems

ser–computer interface

penEHR

rchetypes

L7

a b s t r a c t

Background: Future-proof EHR systems must be capable of interpreting information struc-

tures for medical concepts that were not available at the build-time of the system. The

two-model approach of CEN 13606/openEHR using archetypes achieves this by separat-

ing generic clinical knowledge from domain-related knowledge. The presentation of this

information can either itself be generic, or require design time awareness of the domain

knowledge being employed.

Objective: To develop a Graphical User Interface (GUI) that would be capable of displaying

previously unencountered clinical data structures in a meaningful way.

Methods: Through “reasoning by analogy” we defined an approach for the representation

and implementation of “presentational knowledge”. A proof-of-concept implementation

was built to validate its implementability and to test for unanticipated issues.

Results: A two-model approach to specifying and generating a screen representation for

archetype-based information, inspired by the two-model approach of archetypes, was

developed. There is a separation between software-related display knowledge and domain-

related display knowledge and the toolkit is designed with the reuse of components in
mind.

Conclusions: The approach leads to a flexible GUI that can adapt not only to information

structures that had not been predefined within the receiving system, but also to novel ways

of displaying the information. We also found that, ideally, the openEHR Archetype Definition

eive m
Language should rec

. Introduction
nteroperability is considered a key property of the genera-
ion of electronic health records (EHR) systems to come. It will
llow EHRs to communicate and to interpret the data received.

∗ Corresponding author at: Medical Informatics, Maastricht
niversity, POBOX 616, 6200 MD Maastricht, The Netherlands.
el.: +31 433882235.

E-mail address: h.vanderlinden@mi.unimaas.nl
H. van der Linden).
169-2607/$ – see front matter © 2009 Elsevier Ireland Ltd. All rights res
oi:10.1016/j.cmpb.2009.03.003
inor adjustments to allow for generic binding.

© 2009 Elsevier Ireland Ltd. All rights reserved.

The two major standardisation approaches in this respect
are HL7 v31 [1], where the architecture of the messages
between systems are standardised, and CEN/TC251 13606

combined with archetypes2 [2,3] which standardises the
record itself.

1 In this article, HL7 will refer to the new v3 standard in its latest
form.

2 In this article, we refer to the CEN 13606/archetypes as
archetypes for brevity.
erved.

mailto:h.vanderlinden@mi.unimaas.nl
dx.doi.org/10.1016/j.cmpb.2009.03.003

s i n
214 c o m p u t e r m e t h o d s a n d p r o g r a m

As advocated by openEHR [4], true future-proof electronic
health record systems will be able to accommodate new
medical concepts without the need for large adjustments to
the system [5]. This is possible because a Reference Model
is implemented in the information system, which need not
change, and “archetypes” then express structured medical
concepts as constraints to and combinations of these classes.
A consequence of this approach is that patient information in
structures that have not been previously encountered can still
be satisfactorily interpreted by the system.

Although future-proof systems are capable of compre-
hending previously unknown (ad hoc) information structures
since they still adhere to the underlying Reference Model,
there is currently no method for the optimal display of such
data. A clinical application receiving data for which it has no
predefined presentation format will have to resort to a low
level generic representation of the received data that may
be difficult to understand by the user; for example, a family
tree might be presented in the form of a nested XML struc-
ture because the application has not been configured for a
graphical display of this information. In order to present this
kind of information in the future the application will need
to be modified, and continually so for each newly encoun-
tered data structure. This is clearly not a scalable approach,
given that clinical data structures do evolve and EHR sys-
tems in the future will receive patient data from other widely
distributed and heterogeneous EHR systems using different
data structures. Throughout this article we will use the non-
trivial yet easy to understand example of a blood pressure
concept. In a local system, it may suffice to define a blood pres-
sure by the systolic and diastolic values. However, when the
blood pressure is communicated to others, contextual infor-
mation such as the cuff size and the position of the patient are
required to make a proper interpretation. Over time, defini-
tions of concepts may change and become more complex and
new concepts may be defined in particular areas of medicine.
Systems that are part of a larger network need to be able to deal
with these evolving definitions, preferably without a (major)
effort in the redesign of the software.

This article discusses an approach to solve these problems
by developing a systematic way of representing and imple-
menting presentational knowledge.

1.1. Background

Interoperability is the ability of two or more systems or com-
ponents to exchange information and to use the information
that has been exchanged [6]. Both HL7 and CEN 13606 aim to
achieve interoperability both at the data structure level and at
the domain model level. At the lowest level, medical concepts
are described using predefined data structures. This ensures
that the information exchanged is complete (it contains all
relevant and required data and metadata) and can be parsed,
stored and subsequently retrieved. At the higher domain level,
additional metadata are used to avoid ambiguity in under-
standing. For example, in textual values these might include

the code and a reference to the coding scheme.

The PropeR project studied the architecture of a generic
electronic health record system. During this study, a prototype
implementation was built and tested [7,8]. The system was
b i o m e d i c i n e 9 5 (2 0 0 9) 213–226

configured for use as multidisciplinary EHR by several thera-
pists in primary care in the context of rehabilitation of stroke
patients in their home environment.

PropeR showed that the successful use of received infor-
mation is not simply a matter of communications between
systems, but also between the receiving system and its users.
For example, even if the GP’s system is capable of storing and
subsequently retrieving a family tree, it is very difficult for the
GP to correctly interpret the information if there is no suitable
screen representation.

1.2. The CEN 13606 archetype approach

The two-model approach of CEN 13606 consists of a Refer-
ence Model with predefined classes that can be implemented
in software and an Archetype Model that defines a UML
model that constrains and combines the classes from the Ref-
erence Model to express medical concepts in standardised
structures. This approach separates the software development
from the medical knowledge implementation and permits
clinical users to define structures describing their clinical spe-
cialities without needing to understand how those structures
will be exchanged or committed to persistent storage.

An archetype or archetype definition is a description of the
structure of a medical concept, as it would be documented
in an EHR system. For example, a blood pressure archetype
describes two physical qualities, one called systolic, the other
called diastolic, each having a unit of measurement, along
with optional metadata for the position of the patient, the cuff
size used and the time of the observation. These values are
represented in a containing class labelled “Blood Pressure”.
Since archetypes support object-oriented principles, generic
archetypes can be further sub-specialized. This allows the
definition of a generic concept such as a “laboratory test” to
be specialized into a “blood sugar test” or a “complete blood
count” (CBC).

Actual archetypes derived from the UML model are also
referred to as archetype instances. An actual observation, for
example a specific blood pressure measurement in a particular
patient, is referred to as an EHR instance.

1.3. Motivation for the project

In the context of the PropeR project [7,8] a web-based EHR
system was built using a simplified version of CEN 13606
archetypes. We focused on the implementation of a domain-
agnostic system based on these archetypes, with generic
screen representations. The feasibility of generating a GUI
based on archetypes [9] was studied in a second phase project.
Both projects revealed that a generic GUI would result in a sub-
optimal display where the structure of the information is used
as the only basis to derive the presentation, rather than dis-
playing the information in a form familiar to the user. It was
found not to be possible to support the definition of an optimal
display format while keeping the GUI generic.

The two-model approach, which is the basis for the

archetypes, has proven to be useful in separating software
development from knowledge implementation. This inspired
the authors to apply the same approach to the GUI domain, in
an attempt to enable the generation of good quality and use-

i n b

f
s
d

2

T
d
i
i
i
a
p
i

1

2

i
r
i
o
d
d
t
v
p
b

A
c
b

b
b
t

2

I
m
a

•

•

•

h
o
d
n
a

c o m p u t e r m e t h o d s a n d p r o g r a m s

ul presentations of EHR data without requiring that each data
tructure (archetype) be known in advance during the system
esign.

. Methods

he objective of the project reported in this paper was to
evelop a new framework for presentation-level interoperabil-

ty. However, since it was expected that the proof-of-concept
mplementation would elicit further requirements and require
terative development cycles, we focused on reusing already
vailable tools for implementation. Two existing candidate
resentation frameworks were tested for the proof-of-concept

mplementation:

. The Cocoon Forms Framework, based on XForms and suit-
able for data entry as well as data display [10].

. The XML User Interface Language (XUL), the Mozilla Foun-
dation framework for developing GUIs [11].

These frameworks were chosen to take advantage of exist-
ng experience from earlier projects [9,12] and to allow for
apid implementation. It was also hoped that the choice of
ndustry-standard tools would ensure that the focus remained
n the feasibility of the new presentation layer and not be
iverted towards other implementation issues relating to the
evelopment of a new technology. However, it was recognised
hat neither framework had been tested for this purpose pre-
iously and that it might later become necessary to develop a
roprietary (albeit open) alternative. This might need either to
e an amalgam of the two above, or entirely new from scratch.

In all cases, the implementations were integrated in the
pache Cocoon Web application to actually deliver the appli-
ation pages. A set of various EHR instances was presented via
oth implementations.

The authors also tested the generic nature of the approach
y mapping the framework to an HL7 structure representing a
lood pressure, to assess the work that would be required for
his.

.1. Presentation-level interoperability

rrespective of the purpose of an element of displayed infor-
ation, it is likely that the presentation of information via an

pplication will have used three types of knowledge:

Knowledge of the best way to display the information
(content-related).
Knowledge of the way a user is accustomed to view infor-
mation (localization).
Knowledge of the device that is used to display the infor-
mation (device-related).

These different types of knowledge are often mixed and

ard-coded into the GUI of the client application. This not
nly makes it difficult to display information from a domain
ifferent to the one for which it was designed, but it also
ecessitates duplication of presentation knowledge within the
pplication to accommodate different display devices.
i o m e d i c i n e 9 5 (2 0 0 9) 213–226 215

2.1.1. Content-related presentation knowledge
Content-related presentation knowledge relates presentation
behaviour to the constituents of the information structure;
for example, numbers might be displayed differently from
text. Such simple knowledge, however, is not sufficient. In
medicine, more complex information structures exist. For
example, a common visual form for blood pressures is of two
numbers separated by a slash (Systolic/Diastolic). An upside-
down tree might be the best visual form of a genealogical
history.

2.1.2. Localized presentation knowledge
Visual information may be subject to local customisation,
from the local language and date format to the preferred units
(e.g. mg/dl vs. �mol/l) and for the use of different coding
schemes. These may be established countrywide, or within
an individual institution. There are also personal preference
differences such as learned behaviour or different cognition
preferences (e.g. pictorial, textual).

2.1.3. Device-related presentation knowledge
There is now a large range of devices capable of sending and
retrieving information on behalf of a user. They include not
only desktop computers and laptops, but tablet PCs, PDAs
and smartphones. The aspiration for smaller devices today
is towards achieving the same browsing experience as that
provided by the more full-featured devices like desktops. How-
ever, this is not universally realised yet and the presentation
toolkits must ideally retain the flexibility to modify content
based on the rendering device.

2.2. A two-model approach to generic GUI generation

From the PropeRWeb application the authors identified that
including screen presentation knowledge in the archetype
definitions introduces dependencies that make content mod-
ification difficult [12]. Not only does it introduce two different
kinds of knowledge (medical domain knowledge and presen-
tation knowledge) into a single model, it also adds complexity
to the display of the same information in different ways
according to context.

Moreover, adding specific display information to the
archetype would duplicate the effort of definition. For exam-
ple, if numerical information from different medical concepts
could be displayed in a similar way, the definition for that
display would still have to be added to each archetype that rep-
resents numeric data. This approach would also increase the
effort to maintain archetype definitions if each one had to be
updated whenever a display definition was added or modified.

The authors distinguish two models: a display-oriented
model (the GUI model) that defines Widgets as screen pre-
sentation units; and a domain-oriented model (the Content
model) that defines Content Units, which create meaning-
ful presentations using Widgets. The first model is the realm
of the GUI designer, while domain experts use the second
model. If this is compared to the archetype approach, the

GUI model resembles the Reference Model, while the Content
Model resembles the Archetype Model. During development,
a strict separation of domains was maintained echoing those
archetype characteristics.

216 c o m p u t e r m e t h o d s a n d p r o g r a m s i n b i o m e d i c i n e 9 5 (2 0 0 9) 213–226

s mo
Fig. 1 – Diagram showing the variou

An overview of how a visual is generated using the two
models is given in Fig. 1. The process is based on the concept
of pipelines. Various units handle binding and widget selec-
tion. Localized presentation knowledge is defined in the final
profile.

Given the premise that future-proof systems are also
capable of receiving information from other domains, it
is necessary that these systems contain domain-agnostic
presentational functionality. All units follow object-oriented
design principles in which a specific unit inherits character-
istics from a more generic unit. This improves consistency
and flexibility, and implies that multiple units can be defined
for any archetype to broaden the range of possible displays
available.

2.2.1. GUI model
The GUI model consists of:

• Widgets, the building blocks of a GUI.
• Views, the definition of a screen.
• Profiles, which tailor the presentation to the local environ-

ment.
Widgets are commonly known in software development
as the elements that make up the windows of an applica-
tion, such as text boxes and labels. A Widget in this approach
del components and their relation.

is a platform-independent display unit that contains presen-
tation knowledge for a single data type. These widgets can
be mapped to classes in the underlying Reference Model.
Two types of widgets exist: data-oriented widgets such as
“text”, “image” and “number”, and group-oriented widgets
such as “list”, “table” and “graph”. The definition of these
widgets is typically a one-time investment since both the Ref-
erence Model (and therefore the widget set), is stable over
time.

Widgets are converted to specific (device-dependent and/or
platform-dependent) versions in the underlying system by
using Views. A View is focused on presentation of the content
and therefore part of the GUI designers’ remit. Views provide
the transformation from platform-independence to platform-
dependency.

In a View, the screen/window is divided in parts, each with
a different purpose. Each part is bound to a data source. This
can be as simple as a static image for a logo or a predefined
tree for navigation bars, up to more complex sources such as
the demographics of the current patient for the header part
and the content units for the content part. An application is
therefore not expected to create the “screen chrome” itself,

but rather to devolve the responsibility for that to the View.

Profiles implement localized presentation knowledge. Pro-
files manage the conversion of information to match user
expectations to avoid interpretation errors.

i n b

t

•

•

•

a

2
T
t
o
U

W
p
l
a
i
f
t
c

n
e
c
g

D
t
i

m
p
f
n

i
c
f
r
a
a

d
m
p
t

c o m p u t e r m e t h o d s a n d p r o g r a m s

A profile contains preferences at various levels that modify
he presentation of the information. There are three levels:

System level. This level contains generic preferences that
should always be applied, e.g. language, date format, and
metric vs. imperial units.
Local level. This level contains generic preferences that are
organization or location specific and are more domain-
related. These preferences include preferred units and
preferred terminologies. This level updates preferences on
a per-role basis.
User level. This level contains user-specified preferences that
can modify the preferred view for a certain type of content
unit e.g. if the user prefers graphs to tables for the same
content.

By combining these tiers, the GUI can be tailored to the user
nd organizational preferences.

.2.2. Content model
he Content model describes the content-related presenta-

ion knowledge in Content Units. A Content Unit consists
f two parts: a Display Content Unit and a Binding Content
nit.

A Display Content Unit is a composition of one or more
idgets, combined with other display-oriented information to

rovide a platform- and device-independent description of the
ayout of a medical concept, which will have been described in
n archetype. The authors suggest using a Content Unit Def-
nition Language (CUDL), which is still to be defined formally,
or this description. Display Content Units can be regarded as
he display counterpart of archetypes. Like archetypes, they
an include other Display Content Units.

Display Content Units can also include (references to)
ormal ranges for semantic interpretation of the value. For
xample, the value of a body mass index (BMI) can be colour-
oded based on the semantic interpretation (e.g. “normal” is
reen, “obese” is red).

The Binding Content Unit describes how the parts of the
isplay Content Units are connected to the associated parts in

he archetyped EHR instance, through the Content Unit Bind-
ng Language (CUBL), which also needs to be defined formally.

Separation of the binding from the archetype allows for
ultiple content units that refer to a single archetype and

rovides the flexibility to display the same information in dif-
erent ways. It should also be possible to map content units
ot only to archetypes, but also to other data structures.

Like archetypes, Content Units are stored in a repository
n a format that is ready for use. The exact implementation
ould be anything from simple source code files to high per-
orming databases. Since they are a platform-independent
epresentation of the presentation of EHR data conforming to
n archetype, they can be shared in the same way archetypes
re sharable.

Any profile that specifies how a specific widget has to be

isplayed will be applied to the components of the content
odel that refer to such a widget. This mechanism makes it

ossible to apply local/system/user preferences also to data
hat was not seen before.
i o m e d i c i n e 9 5 (2 0 0 9) 213–226 217

3. Results

A proof of concept Web application was built using the Apache
Cocoon Web application framework [13]. This Web application
can display EHR instances conforming to various archetypes
based on the approach described above. The EHR instances are
offered to the system as an XML structure.

The Apache Cocoon Web application framework is a
generic open source framework that is fundamentally based
on the concept of separation of concerns. This is reflected
in the component-based implementation and supports the
corresponding pursuit of separation of knowledge types. It
implements the pipeline concept as described above. Since
Cocoon excels in processing XML, it is a good candidate to
build a generic Web-based GUI that can be generated.

3.1. Cocoon Forms Framework

The Cocoon Forms Framework, or CForms block [10], is a
standard part of the Cocoon framework and provides wid-
gets that can be used for both data display and for data
entry. In its simplest form, a CForms widget is defined by
three XML structures: the definition, the binding and the
template. The definition is a description of the label and the
data type. Optionally, validation rules can be added, such as
checks on date ranges or lists of predefined values, but also
more elaborate validations that can be added as functions in
JavaScript or Java, because an API is available to access the
widgets in these languages. The validation can be done, not
only at the widget level, but also at the form level, i.e. across
widgets.

The binding is based on XPath and connects the widget to its
underlying information structure. The latter can be anything
from XML to JavaBeans to SQL-results or even custom-built
structures. In its simplest form, the binding merely provides
the mapping between the CForms widget and the underly-
ing data structure, but in more complicated structures it also
holds the definition of how to add or delete substructures (e.g.
in a table where rows can be added and/or deleted).

Archetypes are hierarchical structures and support an
XPath-like definition [14] to access substructures, which
matches the binding used in CForms. The CForms binding file
would be an implementation of the Binding Content Unit.

The template provides a platform-dependent description of
the actual display of the widget, for example an HTML page
where the label and the value are displayed as rows in a table
or a text area used for the data entry of a string. Note that
a (HTML) form is typically implemented in Cocoon as three
different XML files, one for the definition of all the widgets,
one for the binding of all the widgets and one for the template
of the form, and its widgets. These files can be handcrafted
or partially or fully automatically generated. The definition
defines the aggregation of the CForms widgets and provides a
simple ID to the template for further layout specification.

The template combined with the definition would be the

implementation of the Display Content Unit.

Figs. 2 and 3 show the same list of blood pressures. The first
is generated by a generic template resulting in a long list, while
the second is optimized by a Blood Pressure Content Unit.

218 c o m p u t e r m e t h o d s a n d p r o g r a m s i n
Fig. 2 – Default display of a list of blood pressures.

CForms work well with other Cocoon blocks such as the
internationalization block (i18n). Together they provide out-

of-the box localization. The use of the i18n block in Cocoon
implies that text that would require localization is tagged with
i18n tags. Based on the provided locale, the i18n block replaces
the tagged text with its localized counterpart. Other conver-

Fig. 3 – Same list of blood pressures, but using an
optimized presentation, the last entry is highlighted to
signal the change in position.
b i o m e d i c i n e 9 5 (2 0 0 9) 213–226

sions such as a localized date format are also supported. The
i18n block would be part of the implementation of the Pro-
files, which would reduce the amount of implementation work
necessary.

The first version of the CForms implementation revealed
that it is relatively easy to define content units based on
CForms widgets for simple archetypes such as a body tem-
perature. Using JavaScript it was possible to define validation
rules across widgets and to write simple conversion rules for
units. This allowed for on the fly calculation of the body mass
index for example, and for quick conversions into a different
unit.

The drawbacks of the CForms became evident when mov-
ing on to more complex data structures such as the blood
pressure. CForms have no definition of a generic layout (e.g.
horizontal orientation or grid), but rely on a set of available
Extensible Stylesheet Language (XSL) stylesheets that provide
a standard rendering in HTML. These stylesheets can be over-
ruled, but are generally considered an integral part of the
CForms block.

Therefore, in the template, it was not possible to define a
generic display of the blood pressure in the previously men-
tioned Systolic/Diastolic format without selecting a specific
approach such as an HTML DIV or TABLE structure. This
approach should be based on the overall design and device
constraints and is therefore part of the view, not the content
unit.

In the definition, it was very difficult to build a composite
content unit based on a composition of widgets. To define a
generic Quantity widget in CForms a composite CForms wid-
get would be required. Standard CForms widgets consist of
a label and a value for a specific data type. The label con-
tent is defined in the definition, rather than bound to an
external information source. There is no provision for dis-
playing a unit. The implementation of a Quantity widget in
CForms would be a so-called class widget consisting of a com-
mon string widget for the label, a common widget with a
numerical type and another common string widget for the
units. The challenge lies in the mapping of multiple instances
of similar values, e.g. if a list of blood pressure measure-
ments is provided, they all map onto the same definition, but
still need a mechanism that distinguishes them from each
other.

The rudimentary implementation of validation rules using
JavaScript showed that it is necessary to have a way to ref-
erence other archetype values as in the case of the BMI
calculation where the values of the weight and the height
archetypes are necessary. CForms widgets have IDs and, as
stated before, validations can be defined on a form level,
across widgets. The reference to the individual values in the
BMI calculation would be easy to achieve in the CForms val-
idation. However, a BMI calculation is part of the domain
knowledge, not of the domain display knowledge. There-
fore, it should not be part of the Content Unit, but of the
archetype. This also raised the question where in general
the validation, calculation and conversion methods should be

stored.

Not all platforms support JavaScript. A platform-
independent specification language is required for widespread
adoption.

i n b

3

X
a
b
p
h
n
d
g
w
t
r
d
b
n

•

•

B
[
t
p
e

d
t

3

D
X
s
X
n
S

i
p
t

i
A
s
a
f

c o m p u t e r m e t h o d s a n d p r o g r a m s

.2. XML User Language (XUL)

UL is a definition language created by the Mozilla Foundation
nd used for their products such as FireFox and Thunder-
ird. Apart from the usual data type oriented widgets it also
rovides widgets that are more generic such as grids and
orizontally and vertically oriented boxes. This provides the
ecessary abstraction for the display and therefore solves the
rawback of CForms’ reliance on HTML for these types of wid-
ets. XUL templates [15] provide a means to connect the XUL
idgets to data sources. However, its implementation revealed

hat it lacks the flexible and easy binding of CForms and
equires complicated definitions of templates, queries and
ata sources. Although this complexity provides a lot of flexi-
ility, it makes it difficult for a non-programmer to define the
ecessary structures.

Other disadvantages are:

XUL template data sources are subject to a ‘same-domain’
restriction. This effectively means that the XUL template
and the referenced data sources should be part of the same
URL domain. This not only prevents separation of the GUI
model, the Content model and the data, but also prevents
the generation of a screen based on multiple sources from
different URL domains.
The implementation of a XUL template and the data sources
are part of the definition of the XUL widgets (e.g. ‘data-
source’ is an attribute of a vbox, a vertically oriented box).
This makes a separation of view and data binding impos-
sible and prevents multiple binding definitions to a single
view.

Schuler et al. [9] also noted the immaturity of the language.
owers also describes the immaturity of the XUL templates

16] in a web article, in which he points out that although
he concept looks promising, the current implementation
revents development of an application beyond the simple
xamples provided.

Since XUL is only supported by Mozilla products, the final
isplay requires a conversion to standard HTML or, if possible,
he use of a Mozilla browser.

.3. Experimental proprietary framework

rawing from the experiences of both the CForms and the
UL implementation efforts described above, we defined a
imple Display Content Unit Language in XML based on the
UL vocabulary, but added the XPATH binding of CForms. The
ecessary conversions were done using various Extensible
tylesheet Language stylesheets. We focused on data display.

For each archetype, a matching Display Content Unit was
mplemented as a small XSL stylesheet. This XSL stylesheet
uts the appropriate information in the label, value, and unit
riple.

Without the functionality of the CForms validation rules,
t was necessary to implement unit conversion rules in XSL.

lthough it was possible to achieve this, the attempt demon-
trated that the available functionality in XSL is too limited
nd cumbersome to use. Unit conversions ideally require dif-
erent mechanisms than simple XSL transformations.
i o m e d i c i n e 9 5 (2 0 0 9) 213–226 219

4. Evaluation

4.1. Enhanced example

The example below shows the necessary components and the
process in the pipeline that provides a meaningful display of
a blood pressure on a user’s smartphone.

When the requesting system application receives an EHR
instance containing a blood pressure, it looks up the reference
of the archetype (1) in the EHR instance and finds a matching
content unit (2) going from specific to generic in the archetype
hierarchy. It then retrieves the appropriate archetype and con-
tent unit from their respective central repositories. A similar
mapping process is executed to find an appropriate view (3)
based on the targeted device and the references to the content
unit. This mapping process is also performed from specific
to generic. The view is requested from a local repository.
Based on the user credentials the appropriate profile (4) is also
retrieved from a local repository. All elements are combined
to display the blood pressure onto the user’s smartphone with
his or her preferred language and formats.

More detailed descriptions of how the various presen-
tational units could look are presented below. Simple XML
notation was used for clarity. Paths are expressed in XPath
notation.

4.1.1. Archetype (1)
An archetype definition of a blood pressure contains two
ELEMENTs of type Quantity each consisting of a value (the
actual measurement) and a unit (usually mmHg), marked
with a name (“systolic” or “diastolic”) (see Fig. 4). Additional
information such as cuff size, and patient position during
measurement can also be described using this archetype.

As a clinician, one is typically only interested in displaying
the date and time and the values of the blood pressure. The
most common way of displaying this is in the familiar layout
of: [time] S/D [unit], with S being the systolic blood pressure
and D the diastolic blood pressure.

4.1.2. Widgets
As stated before, Content Units are based on Widgets, which
in turn represent the data type classes of the Reference Model.
Timestamps can be displayed by date–time widgets, numbers
by number widgets and labels by text widgets.

4.1.3. Content units (2)
A specialized Blood Pressure Content Unit defines a blood
pressure as a combination of a date–time widget with two
number widgets for the values, separated by a slash and fol-
lowed by a label to display the unit (see Fig. 5). All this should
be displayed in a horizontal layout. The content units also
contain mappings that bind the widgets to the appropriate
substructures of the archetype definition (see Fig. 6).

4.1.4. Views (3)

The GUI designer defines a generic view that defines a part
holding a content unit for the patient identification informa-
tion, a part containing a navigation menu and a part that
serves as a placeholder for any type of content unit (see Fig. 7,

220 c o m p u t e r m e t h o d s a n d p r o g r a m s i n b i o m e d i c i n e 9 5 (2 0 0 9) 213–226

(sou
Fig. 4 – Archetype definition of a blood pressure

top definition). The specialized view in this smartphone exam-
ple is derived by mapping the widgets to their smartphone
equivalents, in Fig. 7, bottom definition, shown as a simple
HTML table. This view can also contain information on design
such as font and font size choice, and colours.

4.1.5. Profiles (4)

A system-wide profile is created that defines the preferred
language, the metric system, the date and time format and
so on for the organization where it is implemented. If nec-
essary, additional profiles could be created to accommodate

Fig. 5 – Display Conten
rce: the openEHR Foundation www.openehr.org).

the system to special users, e.g. visiting physicians from the
USA.

4.2. Mapping to HL7 structures

HL7 focuses primarily on message exchange and therefore
considers this display problem to be part of the receiving sys-

tem’s domain. However, this approach is equally useful in that
realm.

To test the generic nature of the approach the Content Unit
of a blood pressure was mapped to the HL7 structure for a

t Unit definition.

http://www.openehr.org/

c o m p u t e r m e t h o d s a n d p r o g r a m s i n b i o m e d i c i n e 9 5 (2 0 0 9) 213–226 221

Fig. 6 – Binding of content unit to archetype definition. Note that
in the binding tag.

Fig. 7 – Generic view definition and a similar definition for
a smartphone.

b
a
a
a
a
N

F
B
d

edge into distinct models, it is possible to separate pure
GUI knowledge from medical presentational knowledge,
lood pressure. Since no HL7 tools were available to generate
n XML version, the mapping was performed by hand using
n example of a blood pressure measurement that was part of
CDA document example in the HL7 ballot of May 2008 [17]

nd the R-MIM model of a blood pressure as modelled in the
etherlands [18].

Fig. 6 shows a binding to an archetype blood pressure.
igs. 8 and 9 show it is possible to create a slightly different
inding Content Unit and reuse the Display Content Unit to

isplay an HL7 structure.

Two issues emerged:

Fig. 8 – Binding of content unit to HL7
the paths in the “value” definitions are relative to the path

1. In the CDA example the only distinction between the sys-
tolic and the diastolic part of the blood pressure could be
made by including a test for a specified code in the path
to the value. This implies that the code system is stable
or the Binding Content Unit needs to be extended with a
mechanism that allows a selection of the path based on the
results of various tests for the code systems used. In the R-
MIM model of the blood pressure, this issue is resolved by
having a specific ‘SystolicPressure’ and ‘DiastolicPressure’
part. In Archetype Definition Language (ADL), this prob-
lem is solved by using stable internal references that are
independent of the coding schemes used.

2. In the R-MIM model, the values of the systolic and diastolic
parts have no separate unit entry. From the definition of the
type of the value, it was not clear if a unit was implied (e.g.
through the coding scheme used), part of the value struc-
ture (but not stated separately) or even part of the content
of the value item (i.e. ‘120 mmHg’ rather than ‘120’). In the
CDA sample a separate entry for the unit was available. To
overcome such a situation, the Binding Content Unit needs
to be extended with a mechanism to set the value to a fixed
entry. Obviously, the better solution is to include a clear
separate unit entry in the R-MIM model.

5. Discussion

5.1. Applicability of the approach

There are several advantages to the solution proposed here:

• First and foremost, it offers the flexibility of defining
specific, optimized screen presentations for known infor-
mation structures, while providing the means to generate
usable screen presentation of previously unknown informa-
tion structures.

• By separating the various types of presentation knowl-
thus adopting another two-model approach and promoting
reuse.

R-MIM-model of blood pressure.

222 c o m p u t e r m e t h o d s a n d p r o g r a m s i n b i o m e d i c i n e 9 5 (2 0 0 9) 213–226

CDA

when the conversion extends beyond the universal con-
Fig. 9 – Binding of content unit to HL7

• It is flexible enough to build an adaptive GUI based on roles.
For example, nurses and physicians can see the same infor-
mation but optimally presented for their specific needs,
while the only difference in development might be a docu-
ment definition.

• The evolution of medical knowledge will always create new
data types and new archetypes, which would lead to new
display representations. This approach ensures that the
available display knowledge can be reused as much as pos-
sible.

• New and novel ways to view EHR information are a topic
of ongoing research. By adhering to the proposed approach,
these views can benefit from the available display knowl-
edge that is already expressed in content units [19]. In the
blood pressure example earlier, the content unit for the sin-
gle blood pressure can be reused to define a list of blood
pressures that can be used in a view to display an interactive
timeline of measurements as well as a simple list view. More
specifically, by separating the Display Content Unit from the
Binding Content Unit, the same Binding Content Unit of
the blood pressure could be mapped onto a Display Con-
tent Unit specifying the common Systolic/Diastolic format
or an X/Y format, where X is bound to the timestamp, Y1
to the systolic and Y2 to the diastolic values. By adding the
appropriate calculation, the Y value could even be mapped
onto the mean blood pressure. A Chart content unit can
take the list of X/Y formats as input for producing the
graph.

• Both the HL7 RIM and CEN 13606 archetypes use a limited
set of predefined data types, with ongoing efforts to har-
monize the two sets. By describing one or more widgets for
each data type, it should be possible to provide a meaningful
display of the information without incorporating presenta-
tion knowledge in the information structure. This means
the current archetype or message specifications need not
be extended and the number of widgets remains small.

• The information can be converted to match local and user
preferences such as preferred coding scheme, language,
units and more.

• A fallback mechanism is used to select a more generic rep-
resentation in the absence of a specific one.

• Standardised content units could be shared between sys-
tems the same way archetypes can be shared. This increases
the intelligence and usability of the system.

• The pipeline approach not only allows reuse of components,
but also offers flexibility in functionality by a simple addi-
tion of pipelines.
This approach complements the openEHR architecture
where templates are used to create a higher-level composi-
tion by constraining and ordering of archetypes. However, the
Document Sample of blood pressure.

openEHR templates are used to create an information struc-
ture, while the approach proposed in this paper is used to
display the structured information.

There are also disadvantages:

• Specialized views, containing special content units, can
only exist for predefined information types. New informa-
tion types or information types from different domains will
fall back to a more basic representation. The latter, however,
can benefit from shared content units.

• A repository equal to that for archetypes is necessary for the
various presentation units.

• A mechanism for retrieving an appropriate screen represen-
tation for the current archetype is necessary, since the most
appropriate selection is based on multiple parameters that
cannot be stored in the archetype instance.

From the proof-of-concept implementation two issues sur-
faced:

• Value-related display. Uniquely marking special values (e.g.
out-of-range values) enhances quick interpretation of the
data. This involves the union of several types of knowledge.
The GUI designer, along with users, decides on the display of
the special value (e.g. large red font, flashing and/or audible
signal), the content modeller decides whether the out-of-
range value needs to be marked (or not), while either the
archetype definition or a separate knowledge base holds the
information on when the value is out of range. Complexity
increases when a range has several subranges with different
interpretations, for example the BMI range can be divided
in underweight, normal, overweight and obese. The content
definition language needs to provide a method of indicating
when and how a special value needs to be marked as well
as a reference to the location of the underlying knowledge.
All this should be combined with a consistent, yet appro-
priate display (e.g. always red for alerts, unless the concept
requires otherwise).

• Conversion rules. Users need to be able to specify their pre-
ferred units, localized date formats, etc., because even when
the unit of measure is displayed, sometimes the value in
itself looks ‘unfamiliar’ at first glance thus hindering imme-
diate interpretation. This requires an extensive conversion
library, which needs to be implemented in a generic way. It
is not clear where this implementation should be located
versions (e.g. Celsius to Fahrenheit) and enters the clinical
domain (e.g. the BMI calculation). The latter would ideally be
located in the archetype, but there is currently no suitable
expression language defined.

i n b

d
d
l

t
t
d
p
i
m
s
o

p
e
c
d
v
u

5

F
X
t
l
m

5
T
b
O
c
e
I

•

•

•

•

c o m p u t e r m e t h o d s a n d p r o g r a m s

More work needs to be done to define a flexible content
efinition language that solves these issues and is capable of
escribing domain-related display knowledge at a sufficient

evel.
The advantages of having flexible GUI interfaces outweigh

he disadvantages. By incrementally defining screen presen-
ations that can be built on top of each other, there is less
uplication of work in building a GUI. A higher-level screen
resentation allows the user to better interpret the presented

nformation leading to more efficient and more reliable infor-
ation exchange. Screen presentations of new information

tructures can be added to the system without major redevel-
pment of the application.

Moreover, less effort is needed to define content units com-
ared to the effort of defining archetype definitions, since an
xisting archetype definition can be used as the basis for the
ontent unit definition. Since many medical concepts can be
isplayed using generic content units such as a simple label,
alue, unit triplet, the majority of concepts can be defined
sing a limited set of generic content units.

.2. Requirements

rom the implementations of the three frameworks (CForms,
UL and proprietary), the authors draw several conclusions

hat elaborate the requirements of valid content definition
anguages. The implementation also led to proposed enhance-

ents for the archetype structures.

.2.1. Requirements for a content model language
he complexity of an archetype model is usually hidden
ehind an application (for example, the archetype editor from
cean Informatics [20]). It would also be possible to hide the
omplexity of the content model language but it should nev-
rtheless be relatively easy to understand for domain experts.
t must have several functionalities:

Description of positional relations between values and fixed
information, for example in the case of a blood pressure
format (“S/D”) where the entire structure is horizontally ori-
ented and the/sign is fixed and relevant.
Description of optional parts of the content widget, for
example the label is optional if a list of similar values is dis-
played and the list already has an appropriate header. This
makes it possible to reuse the widget on a small screen such
as a cell phone screen.
A mechanism that defines the display behaviour when the
value is within a specific range, for example when the BMI
value is in the “obese” range it should be coloured red. This
requires a mapping to a location, which holds information
on the meaning of the various ranges as well as a description
of the display options for each of the ranges. Note that the
description of the meaning of these ranges should not be
part of the content unit but of the archetype definition or a
specialized knowledge server.

Description of a binding to the underlying archetype. This
binding ties the label, value and unit to the respective coun-
terparts in the archetype. The binding language should
be generic enough to accommodate other structures than
archetypes.
i o m e d i c i n e 9 5 (2 0 0 9) 213–226 223

More work needs to be done to solve these issues and to
define a flexible content definition language that is capable of
describing domain-related display knowledge at a sufficient
level.

5.2.2. Requirements for archetypes
The proof-of-concept implementation has shown that correct
interpretation of an archetyped EHR instance (for example, the
actual description of a blood pressure) cannot be done without
the associated archetype, since some semantic information is
not duplicated in the instance. This is also true for localization
of the information. Archetypes support translations of a con-
cept into various languages, but the instance only contains
the requested language. If the receiver wants to use several
languages then the archetype itself must be available to the
proposed framework. This makes the functionality to retrieve
the archetype from a repository that is available to all receiving
systems, a requirement, not an option.

During the proof-of-concept implementation, we observed
that the same information was defined using two different
archetypes. A complete blood count report was coded with a
specific CBC report archetype and with a more generic labora-
tory report archetype. In the former, each triplet of name, value
and unit was uniquely identified, thus providing a path to
each of the values, while in the latter, the triplets were merely
part of a list without a unique identification at item level. The
former instance allowed for a specific content unit control-
ling the order in which the test results were displayed, while
the latter could only provide a more generic list in the order
available in the instance. Although both structures were valid
EHR instances, the authors suggest that information should
only be structured using the most specific archetype defini-
tion available. It is proposed to adjust the mechanism used in
archetype selection during data entry so that the most appro-
priate archetype is selected more rigorously.

There is currently only a rudimentary version of an expres-
sion language defined in the openEHR Archetype Definition
Language [14] that can be used to define calculations based
on archetypes or archetype parts. The current ADL ver-
sion (1.4) describes how to reference archetype parts within
the archetype (e.g. the systolic and diastolic values in a
blood pressure archetype) but not across archetypes, e.g.
the BMI calculation which combines the weight and height
archetypes.

This is a restriction that is not necessarily applicable to
other formalisms. Expressing an archetype in an imperative
programming language would provide access to all the com-
putational power of that language, including validations based
on cross-archetype values.

Finally, in order to implement a fall back mechanism in
the selection of the content units from specific to generic, it
is desirable to have inheritance information in the archetype
definitions. In the above example of the CBC report, examina-
tion of the specific CBC report archetype shows it is inherited
from the more general laboratory report archetype. However,
there is no required indication of this inheritance in either

the EHR instance or the archetype definition. The ADL as well
as the Archetype Object Model (AOM) [21] do provide an entry
‘parent archetype id’, but this is optional and the accompany-
ing text does not clarify if this should be used to indicate the

s i n
224 c o m p u t e r m e t h o d s a n d p r o g r a m

inheritance path, or to express which archetypes are allowed
as parents.

This situation might be improved, if the entry were a
required indication of the inheritance path, possibly adding a
special value to indicate ‘no-parent’ or ‘root-archetype’. Addi-
tionally the process of archetype definition should enforce the
selection of the most appropriate parent.

The lack of this inheritance path does not invalidate the
content unit approach. It merely results in a more generic
display than necessary.

The requirements to the archetype model presented here
are not unique for the proposed framework. Any GUI frame-
work would benefit from them.

5.3. Related work

A similar approach has been developed by Ocean Informat-
ics and implemented in their EhrView application [22]. The
EhrView application modifies the information through a series
of XSL stylesheets. These stylesheets are selected by matching
the archetypes names in the structures. The matching process
selects the most specific stylesheet available in a repository.
The EhrView application does not separate content-related
modelling from software-related modelling and it is only
defined for one type of device: a regular screen of a desktop
PC or laptop. It also offers limited options to adjust to local or
user preferences.

Fiala et al. [23] have described a component-based
approach for adaptive Web documents that influenced the
approach reported here. They too make a distinction between
content-related and display-related presentation knowledge
and they used the pipeline concept to define Web document
generation. However, their focus is on adapting information
presentation to user preferences and devices. The informa-
tion is known and defined in advance and there is no method
to handle unknown information structures or describe con-
versions to preferred units.

University College London (UCL) uses a Java-based
approach, and has developed their own rendering toolkit.
Class files are annotated with Enterprise JavaBeans 3.0 (EJB
3) descriptors as well as directives to the toolkit, so that one
single archetype file (including content often represented in
ADL) can be used to create every tier of an application without
further (archetype-related) effort being required.

Outside the healthcare domain, several studies on adaptive
GUIs and UI modelling languages have been done (e.g. [24]).
The majority of these studies either focus on the adaptability
to different display devices (e.g. [25]) or to the disabilities of the
user (e.g. [26]). They start from the premise that the informa-
tion to be displayed is known, which is the problem embedded
in the lower section of the GUI model in Fig. 1. However, it
is possible that some existing modelling languages could be
made sufficiently expressive for a complete role in archetype
visualisation.

5.4. Future work
More research is needed to define a Content Unit Definition
Language that is flexible, yet easy enough to use. This should
be accompanied by a binding definition language that pro-
b i o m e d i c i n e 9 5 (2 0 0 9) 213–226

vides a simple mechanism to map a display definition to the
associated archetyped EHR instance.

Although XUL could provide the initial version of the lan-
guage to handle positions and orientations, it needs to be
extended with a binding definition language that matches the
ease of the CForms binding definition language.

The content definition language also needs to support
descriptions of more complex content units. These require
references to knowledge bases with reference information
(such as the reference graphs in a paediatric growth chart)
and flexible mechanisms to define highly specialized graphic
structures for charts and family trees.

The Scalable Vector Graphics (SVG) specification is a mod-
ularized language for describing two-dimensional vector and
mixed vector/raster graphics in XML [27]. It is a good candi-
date for the description of such graphic structures, but it is
too complicated to manually define them therein. It could be
the basis for specialized widgets that can be used in the con-
tent units. This, however, should be done carefully to avoid
convolution of the separation of the domains. In the example
of the family tree, the tree is composed of persons and rela-
tionships. Relationships are described as lines and persons are
depicted by shapes. Since colours, line styles and shapes all
have meaning; it is difficult to separate the GUI-model knowl-
edge (colours, line style, shape, fill colour) from the Content
model (meaning of relationship, gender, disease).

The authors have demonstrated that relatively little work
is necessary to reuse this approach for HL7 structures. To fully
evaluate the generic nature of the approach a more extensive
set of archetypes and HL7 structures need to be tested.

5.4.1. Data entry
The approach presented here has been primarily focused on
data consultation. While clearly data entry differs from data
display insofar as one creates data and the data structures that
contain it, and the other simply renders existing input, the lay-
out should be shared between entry and display as much as
possible. Doing this enables the technical rendering apparatus
to be shared, and allows a clinician to later review data with
a similar appearance to that of the original committer. How-
ever, this is non-trivial because data entry focuses on speed
and data validation, not (so much) on appearance, as has been
discussed by van der Meijden [28] and van Ginneken [29].

This approach can support data entry by extending the
binding framework to binding events. Events can be used
to perform calculations, data validation, entry support (e.g.
context-related selection lists) and the creation of the data
structure.

The generic workflow would be to retrieve existing data
(in case of data modification) or an empty data structure (in
case of new data) from the system kernel, which contacts
the archetype server for the appropriate archetype refer-
ences. This is passed to the GUI in the same pipeline process
described earlier. Events that create data structures (e.g. a row
in a table), can communicate with the system kernel on valid
data structures. Finally, the resulting data structure is passed

onto the system kernel for final validation and data storage.

Events to support data entry and data validation events
need a closer connection to the validation parts of the
archetype, to retrieve and provide valid subsets or verify if

i n b

t
k

m
a
e
e
t
r

6

I
t
a
r
u

e
e
G
i
w
f
f
s
m
n
c

a
a
t
t
a
t
h
t
k

A

H
d
t
t

J
m

C

A
fi

A

W
k

r

c o m p u t e r m e t h o d s a n d p r o g r a m s

he entry is within the provided range. Connection to external
nowledge sets (e.g. coding sets) is also necessary.

Event binding crosses the separation between the GUI
odel and the Content model separation because the events

re widget-related, while the action is content-related. For
xample, pressing an “add new row” button is a simple GUI
vent. The related action needs to communicate with the sys-
em kernel on how to extend the data structure to add a new
ow. This falls into the Content model domain.

. Conclusion

nteroperability does not stop when information from one sys-
em can be successfully understood and/or incorporated in
nother system. It is also necessary to provide a screen rep-
esentation that gives the user of the receiving system a clear
nderstanding of the new information.

This paper describes a two-model GUI approach that
xtends that currently used by EN13606 for knowledge mod-
lling. The authors argue that this approach leads to a flexible
UI that can adapt to information structures not predefined

n a receiving system and display them in an interpretable
ay. This flexibility will also accommodate data entry since

uture-proof systems are in equal need of data entry forms
or newly created concept structures. The work has demon-
trated its generic nature by requiring only a minimal effort to
ap the framework to equivalent HL7 structures. It should be

oted that a future-proof generic GUI methodology also places
onstraints on the archetype model.

Ongoing biomedical research in areas such as biomarkers
nd proteomics will eventually add new medical concepts to
n EHR that need specific representations, not yet found in
he current EHR systems. These will be able to take advan-
age of any user preferences for physical and other quantities
lready in being in the system automatically. Nevertheless,
his work also cautions that promising frameworks might not
old out in actual implementation. The main reason for this is
he underlying common assumption that (part of) the domain
nowledge is hard-coded into the GUI.

uthor’s contributions

vdL is guarantor of the study. She initiated the idea and
eveloped the proof of concept. T.A. was heavily involved in
he discussion on the best approach. J.T. was also involved in
he discussion.

HvdL wrote most of the manuscript with the help of T.A.
.T. and T.A. critically reviewed the various versions of the

anuscript. All authors approved the final version.

onflict of interest statement

ll authors declare that there are no competing interests,
nancially or otherwise.
cknowledgments

e would like to thank the team from Ocean Informatics who
indly provided the information we needed. We would also
i o m e d i c i n e 9 5 (2 0 0 9) 213–226 225

like to thank Patrick Ahles, Rong Chen and Arie Hasman and
Dipak Kalra for their valuable insights.

We would especially like to thank Thilo Schuler for his work
in the earlier versions of this article.

The authors recognise the established trademarks of tech-
nology providers in this paper.

e f e r e n c e s

[1] Health Level 7 Inc. (last accessed 18 January 2008). Available
from: http://www.hl7.org.

[2] Health Informatics—Electronic health record
communication. Part 1. Reference Model, CEN/TC251
prEN13606-1:2005:E, March 2005.

[3] Health Informatics—Electronic health record
communication. Part 2. Archetypes, CEN/TC251
prEN13606-2:2005:E, December 2005.

[4] openEHR (last accessed 18 January 2008). Available from:
http://www.openehr.org.

[5] T. Beale, Archetypes—an interoperable knowledge
methodology for future-proof information systems,
Published on the Internet (last accessed 18 January 2008).
Available from: http://www.openehr.org/shared-resources/
publications/archetypes.html.

[6] Standards Coordinating Committee, IEEE standard glossary
of software engineering terminology, IEEE Comput. Soc.
(1990).

[7] H. van der Linden, G. Boers, H. Tange, J. Talmon, A. Hasman,
PropeR: a multidisciplinary EPR system, Int. J. Med. Inform.
70 (2003) 149–160.

[8] H. van der Linden, J. Talmon, H. Tange, J. Grimson, A.
Hasman, PropeR revisited, Int. J. Med. Inform. 74 (2005)
235–244.

[9] T. Schuler, S. Garde, S. Heard, T. Beale, Towards
automatically generating graphical user interfaces from
openEHR archetypes, Stud. Health Technol. Inform. 124
(2006) 221–226.

[10] Cocoon Forms Block Implementation (last accessed 2 June
2008). Available from: http://cocoon.apache.org/2.2/blocks/
forms/1.0/489 1 1.html.

[11] XML User Interface Language (last accessed 18 January
2008). Available from: http://www.mozilla.org/projects/xul/.

[12] H. van der Linden, J. Grimson, H. Tange, J. Talmon, A.
Hasman, Archetypes: the PropeR way, Medinfo 11 (2004)
1110–1114.

[13] Apache Cocoon Web Application Framework (last accessed
18 January 2008). Available from: http://cocoon.apache.org.

[14] T. Beale, S. Heard, Archetype Definition Language (last
accessed 2008/06/04). Available from: http://www.openehr.
org/svn/specification/TRUNK/publishing/architecture/am/
adl.pdf.

[15] XUL: Template Guide (last accessed 3 July 2008). Available
from: http://developer.mozilla.org/en/docs/XUL:Template
Guide.

[16] J. Bowers, XUL templates are a waste of time (last accessed 3
July 2008). Available from: http://www.jerf.org/resources/
xblinjs/whyNotMozilla/notXulTemplates.html.

[17] HL7 Version 3 Standard Ballot Package Download (last
accessed 3 July 2008). Available from: http://www.hl7.org/
v3ballot/html/welcome/downloads/downloads.htm.

[18] A.M. Fleurke, W.T.F. Goossen, E.J. Hoijtink, J. van der Kooij,

Swen, M. Vlastuin, Weinstein, ALGEMEEN LICHAMELIJK
ONDERZOEK: BLOEDDRUK (last accessed 3 July 2008),
Version 1.0. Available from: http://www.
zorginformatiemodel.nl/1 documentatie/Doc Obs
Bloeddruk R01 V1.0.pdf.

http://www.hl7.org/
http://www.openehr.org/
http://www.openehr.org/shared-resources/publications/archetypes.html
http://cocoon.apache.org/2.2/blocks/forms/1.0/489_1_1.html
http://www.mozilla.org/projects/xul/
http://cocoon.apache.org/
http://www.openehr.org/svn/specification/TRUNK/publishing/architecture/am/adl.pdf
http://developer.mozilla.org/en/docs/XUL:Template_Guide
http://www.jerf.org/resources/xblinjs/whyNotMozilla/notXulTemplates.html
http://www.hl7.org/v3ballot/html/welcome/downloads/downloads.htm
http://www.zorginformatiemodel.nl/1_documentatie/Doc_Obs_Bloeddruk_R01_V1.0.pdf

s i n
226 c o m p u t e r m e t h o d s a n d p r o g r a m

[19] E. Sundvall, M. Nystrom, M. Forss, R. Chen, H. Petersson, H.
Ahlfeldt, Graphical overview and navigation of electronic
health records in a prototyping environment using Google
Earth and openEHR archetypes, Medinfo 12 (2007) 1043–1047.

[20] Archetype Editor (last accessed
2 June 2008). Available from: https://wiki.oceaninformatics.
com/confluence/display/TTL/Archetype+Editor.

[21] T. Beale, Archetype Object Model (last accessed 4 June 2008).
Available from: http://www.openehr.org/svn/specification/
TRUNK/publishing/architecture/am/aom.pdf.

[22] EhrView (last accessed 21 January 2008). Available from:
http://oceaninformatics.biz/Products/ProductDescription.
pdf.

[23] Z. Fiala, M. Hinz, K. Meißner, F. Wehner, A component-based

approach for adaptive, dynamic Web documents, J. Web Eng.
2 (2003) 058–073.

[24] N. Souchon, J. Vanderdonckt, A Review of XML-Compliant
User Interface Description Languages, DSV-IS 2003, 2003, pp.
377–391.
b i o m e d i c i n e 9 5 (2 0 0 9) 213–226

[25] N. Mitrovic, J.A. Royo, E. Mena, M.D. Luna, ADUS: indirect
generation of user interfaces on wireless devices, in:
Seventh International Workshop Mobility in Databases and
Distributed Systems (MDDS 2004), 2004.

[26] K. Gajos, J. Wobbrock, D. Weld, Automatically generating
user interfaces adapted to users’ motor and vision
capabilities. Proceedings of the 20th annual ACM
symposium on User interface software and technology
(2007) 231–240.

[27] D. Jackson, Scalable Vector Graphics (SVG) 1.1 Specification
(last accessed 4 July 2008). Available from:
http://www.w3.org/TR/SVG11/.

[28] M.J. van der Meijden, H.J. Tange, J. Boiten, J. Troost, A.
Hasman, An experimental electronic patient record for

stroke patients. Part 2. System description, Int. J. Med.
Inform. 58–59 (2000) 127–140.

[29] A.M. van Ginneken, Considerations for the representation of
meta-data for the support of structured data entry, Methods
Inf. Med. 42 (2003) 226–235.

https://wiki.oceaninformatics.com/confluence/display/TTL/Archetype+Editor
http://www.openehr.org/svn/specification/TRUNK/publishing/architecture/am/aom.pdf
http://oceaninformatics.biz/Products/ProductDescription.pdf
http://www.w3.org/TR/SVG11/

	Generic screen representations for future-proof systems, is it possible?
	Introduction
	Background
	The CEN 13606 archetype approach
	Motivation for the project

	Methods
	Presentation-level interoperability
	Content-related presentation knowledge
	Localized presentation knowledge
	Device-related presentation knowledge

	A two-model approach to generic GUI generation
	GUI model
	Content model

	Results
	Cocoon Forms Framework
	XML User Language (XUL)
	Experimental proprietary framework

	Evaluation
	Enhanced example
	Archetype (1)
	Widgets
	Content units (2)
	Views (3)
	Profiles (4)

	Mapping to HL7 structures

	Discussion
	Applicability of the approach
	Requirements
	Requirements for a content model language
	Requirements for archetypes

	Related work
	Future work
	Data entry

	Conclusion
	Authors contributions
	Conflict of interest statement
	Acknowledgments
	References

