openEHR reflections on the 'Blue Line'

Ian McNicoll

openEHR Foundation Ocean Informatics

Mary's story ...

The apps and 'hacks' revolution

Experience of interoperability Semantic Health SiOp report 2009

- "... SiOp implementation ... depends on social, cultural and human factors within each organisation, region and country, each system and each time period.
- ... realising full SiOp is not necessarily a consensual goal in every place at any fixed time."

Opportunities

- However, demand for interoperability continually emerges
 - in all sectors
 - at all levels of organisation
- In UK primary-care sector interoperability is now a key business challenge to meet multiple 'standards' demanded by different customers
- Systems and processes to meet that demand are deficient

Interoperability is not a technical problem

- It is a clinical problem, which reflects
 - Diverse clinical recording practice
 - Diverse recording requirements
 - GP vs. specialist perspective
 - Lack of clinical involvement in standards development
 - Too technical?
 - Too time-consuming
 - Clinical informatics is hard

openEHR Foundation

- Not-for-profit Foundation based at UCL CHIME
 - www.openehr.org
- develops open specifications for a clinical information model allowing commercial and open source use
 - as the basis for application development
 - As the basis for standardised, shared clinical content
- develops publishes crowd-sourced, open-source clinical content specifications
 - Archetypes, Templates, Termsets
 - openEHR Clinical Knowledge Manager (CKM)
 - www.openehr.org/knowledge

Archetypes

- Computable models of discrete clinical concepts
 - "Maximal data set", Universal use case
 - Include bindings to terminology
- Familiar components of a health record
 - Blood pressure, Medication order, Family history
 - Prostate cancer histopathology result
- Models of components of 'clinical practice'
 - Designed for use within systems not just between systems

Archetypes: Apps for data

Manageable clinical content components

- Clinically and collaboratively authored
 - Using open-source development paradigm
 - Democratised clinical content development
 - Open CC-BY-SA licence allowing both commercial and opensource use.

 Agility to respond to continually changing clinical demand

Models of clinical practice

Templates

Formally define a specific aggregation of archetypes

- For a particular clinical setting or use-case.
- Constrain the component archetypes to make the maximal dataset 'fit for purpose'
- Create 'minimum datasets' to underpin ...
 - Data entry screens ,messages
 - Clinical standards
 - "Model-driven development"

Archetype re-use in Templates

openEHR CKM: Web 2 collaboration

openEHR CKM – archetype repository

openEHR CKM - clinical collaboration

Clinical Review

Mean Arterial Pressure Ouantity

0

Occurrences: 0..1 (optional)

The average arterial pressure that occurs over the entire course of the heart contraction and relaxation cycle. MAP can be calculated using (2 x Systolic Blood Pressure + Diastolic Blood Pressure) divided by 3. Property: Pressure Units:

 0.0..<1000.0 mm[Hg] Limit decimal places: 1 Eugene Igras (19-Jan-2009) 🖾

As per Cardiovascular Physiology Concepts by Richard E. Klabunde, Mean Arterial Pressure (MAP) is determined by the cardiac output (CO), systemic vascular resistance (SVR) and central venous pressure (CVP): MAP = CO*SVR + CVP. Because CVP is usually at or near 0 mmHg, the above formula is often simplified to: MAP = CO*SVR.

In practice, MAP is determined using arterial pressure measurements. At resting heart rates, MAP can be approximated using systolic pressure (SP) and diastolic pressure (DP): MAP \sim = DP + 1/3*(SP - DP) or equivalently: MAP \sim = (2*DP + SP)/3

Also see: http://www.mdcalc.com/map

Andrew James (21-Jan-2009)

There is also a commonly used "easy" formula: DBP + pulse pressure/3. The "geometric MAP" may be the best measure (Chemlla et al, J Appl Physiol 99: 2278-2284, 2005) but this may not be widely known, and is probably not used in standard measuring devices. Suggest seek advice for one of the specialist cardiology societies

'One language on the Blue Line?'

- Interoperability cannot be technically or philosophically engineered
 - It must be negotiated by stakeholders
 - Vendors must play a critical role in process
 - "Ontologies are not enough"
- Traditional 'standards' development is too slow and inflexible to meet consumer needs
 - Open-source, web 2.0 collaborative methods and timescales must be adopted

