
EHR Query Language (EQL) – a query language for archetype-based health records

Chunlan Ma, Heath Frankel, Thomas Beale, Sam Heard

 Ocean Informatics Pty. Ltd, Australia

Abstract

OpenEHR specifications have been developed to standardise
the representation of an international electronic health record
(EHR). The language used for querying EHR data is not as yet
part of the specification. To fill in this gap, Ocean Informatics
has developed a query language currently known as EHR
Query Language (EQL), a declarative language supporting
queries on EHR data. EQL is neutral to EHR systems,
programming languages and system environments and depends
only on the openEHR archetype model and semantics. Thus, in
principle, EQL can be used in any archetype-based
computational context. In the EHR context described here,
particular queries mention concepts from the openEHR EHR
Reference Model (RM). EQL can be used as a common query
language for disparate archetype-based applications. The use
of a common RM, archetypes, and a companion query
language, such as EQL, semantic interoperability of EHR
information is much closer. This paper introduces the EQL
syntax and provides example clinical queries to illustrate the
syntax. Finally, current implementations and future directions
are outlined.

Keywords:

openEHR reference model, archetype, query language,
electronic health record

Introduction

The National E-Health Transition Authority of Australia
(NEHTA) defines an EHR query as a formal user or system
request for information to the EHR repository/database that
specifies the constraints on precisely what part(s) of the EHR
content needs to be retrieved [1]. Due to the lack of any clear
standards in EHR query services, NEHTA has identified it as a
major area for review[2]. Easy accessibility of data from an
electronic health record (EHR) is considered as one of the
essential features of the EHRs that can enhance a hospital
revenue cycle [3]. There are two major challenges commonly
encountered in clinical data accessibility: one is that people
who understand the clinical data best, such as health
professionals, are not the ones most competent of querying the
data; another challenge is that qualified SQL programmers or
other query language programmers must spend much time on
exploring the data, composing tedious code to provide the data
that end user needs [4]. EHR data include thousands of facts to

do with a patient’s clinical status, which can be highly
structured, semi-structured or non-structured, or most
commonly, a mixture of all three. The lack of discipline
commonly found in EHR data not only increases the
difficulties in storing them, but particularly the difficulty in
querying them.

The openEHR specifications have been developed to
standardise the representation of an international electronic
health record (EHR)1. Although there are implementations
based on these specifications in development, experience with
querying archetype-based EHR data is still limited, to the point
where it is not clear what kind of query language(s) are even
appropriate for information systems based on archetypes.

Since the openEHR specifications intend to define a
standardised EHR infrastructure, a query language for this
infrastructure should aim to become an open specification as
well. The query language described here will be submitted to
the openEHR foundation as a candidate openEHR query
language.

There are four requirements for an archetype-based query
language. First, the query language should be able to express
queries for requesting any data item from an archetype-based
system, i.e. data defined in archetypes and/or the underlying
reference model . Second, the query language should be able to
be used by both domain professionals and software developers.
Third, the query language should be portable, i.e. be neutral to
system implementation, application environment and
programming language. Lastly, the syntax should be neutral
with respect to the reference model, i.e. the common data
model of the information being queried. Particular queries will
of course be specific to a reference model.

The current available query languages that might potentially be
used to query openEHR data include the XML Query
Language (XQuery) [5] and the Structured Query Language
(SQL) . XQuery uses eXtensible Mark-up Language (XML) as
its underlying data model. It has rich predefined functions and
allows user-defined functions supporting the kind of clinical
data requests required in the EHR context. It is platform
independent. Nevertheless, its main strength is also its main
flaw: it is limited to purely XML data environments. Direct use
of XQuery for the openEHR EHR would require that all

1http://www.openehr.org/

openEHR data must be represented in XML format. However,
openEHR is designed as an object-oriented framework, and
allows for a multitude of data representations, including as
programming language persistent objects (e.g. in the form of
Java objects in a product such as db4o2); as language neutral
objects (such as in a database like Matisse3); as relational
structures (governed by an object/relational mapping layer),
and in various XML storage representations (e.g. XML blob or
XML databases). XQuery is therefore problematic, because the
query syntax is directly tied to the representational format of
the data. Considerable efforts would be required to convert
openEHR data in each deployment context to XML just for the
purpose of querying; each such transformation may well be
custom, requiring special work on the part of the system
implementers.

A further disadvantage is that XQuery is a native XML
programming language requiring intimate familiarity of both
users (in this case, health professionals and software
developers) alike with XML and XQuery, something that
cannot be assumed.

SQL in its standard form is also not a viable candidate for
querying archetype-based EHR data, because it does not
support object-structured data, e.g. the data modelled in
archetypes. It has been found that considerable intellectual
efforts are required when using SQL to search and retrieve
clinical data for both individual subject care and clinical
research studies [6].

Object Query Language (OQL) is a query language for object-
oriented databases. OQL was developed by the Object Data
Management Group (ODMG4), which was disbanded in 2001.
Comparing with XQuery and SQL, OQL would be the best
candidate query language used for archetype-based EHR data.
However, it is complex and as a result, it has not been widely
implemented. For large object models, such as the openEHR
RMs, OQL query statements can become extremely verbose.
OQL uses an object programming style dot-notation to express
object members, while an XPath-based syntax is specified by
openEHR to locate archetype data elements. Using OQL with
archetype-based EHRs would require the use and translation
between these two notation styles.

To satisfy the aforementioned requirements of an archetype-
based query language, a new language – EHR Query Language
(EQL) is under development. This paper introduces the EQL
features and syntax. Example clinical query scenarios are used
to demonstrate the use of the EQL expression.

Methods

EQL was developed based on the analysis of a set of clinical
query scenarios, the study of the current available query
language syntaxes (including XQuery, SQL and Object Query
Language), and the study of the archetypes technology,
openEHR RM and openEHR path mechanisms.

2 http://www.db4o.com/
3 http://www.matisse.com/
4 http://www.odmg.org/

What is EQL

EQL is a declarative query language developed exclusively for
expressing the queries used for searching and retrieving the
clinical data found in archetype-based EHRs. It is applied to
the openEHR EHR Reference Model (RM) and the openEHR
clinical archetypes, but the syntax is generic across
applications, programming languages, system environment,
and reference model. The EQL is designed as a common
language used for expressing clinical data requests across
multiple openEHR-based applications.

The EQL has two innovations: 1) utilizing the openEHR path
mechanism to represent the query criteria and returned results;
and 2) using a ‘containment’ mechanism to indicate the data
hierarchy and constrain the source data to which the query is
applied.

OpenEHR path mechanisms

OpenEHR path syntax is used to locate clinical statements and
data values within them using Archetypes. An Archetype is a
computable expression of a clinical concept in the form of
structured constraint statements, based on some reference
model [7], such as the openEHR RM which provides the
support for clinical archetypes. Each archetype has a global
unique identifier and each node of this archetype has a unique
archetype node identifier. The openEHR architecture has a path
mechanism that enables any node within a top level structure to
be specified from the top of the structure using a "semantic" X-
path compatible path. The availability of such paths radically
changes the available querying possibilities with health
information, and is one of the major distinguishing features of
openEHR [8]. Consequently, it is possible to locate any node in
an archetype, including leaf data elements by using the
archetype and archetype node identifiers within openEHR
paths.

Features of the EQL

The EQL features are listed below:

• Neutral expression syntax. EQL does not have any
dependencies on the underlying RM of the archetypes.
It is neutral to system implementation and environment.
This is one of the distinguishing features of the EQL.

• Allows setting query criteria using archetype and node
identifiers, data values within the archetypes, and class
attributes defined within the openEHR RM.

• Allows the returned results to be top-level archetyped
RM objects, data items within the archetypes or RM
attribute values.

• Supports naming returned results.

• Support queries with logical time-based data rollback.

• Supports query criteria parameters.

• Supports arithmetic operations (such as count, addition,
subtraction, multiplication, and division), relational
operations (>, >=, =, !=, <=, <) and Boolean operations
(or, and, xor, not).

• Supports some functions that are supported in XQuery,
such as current-date().

• Users could specify their preference on the retrieved
data, such as ordering preferences, or total number of
retrieved results.

• Supports the queries for individual clinical subjects at
the point of care, administrative purposes and clinical
research purposes.

EQL Syntax

Figure 1 shows a typical EQL statement, which would return
all blood pressure values where systolic value is greater or
equal to 140 or diastolic value is greater or equals to 90 within
a specified EHR. EQL syntax is a synthesis of SQL structural
syntax and openEHR path syntax. The SQL clauses SELECT,
FROM, WHERE, and ORDER BY provide the basic structure
of EQL. The SELECT clause specifies the data elements to be
returned. The FROM clause specifies the result source and the
corresponding containment criteria. The WHERE clause
specifies data value criteria within the result source. The
ORDER BY clause indicates the data items used to order the
returned result set.

The openEHR path syntax [7], which is XPath compatible, is
used in EQL to identify data items. Apart from the path
mechanisms, EQL has a containment constraint, which
specifies the hierarchical relationships between parent and
child data items. The details of the EQL syntax are introduced
below.

openEHR paths

The details of the openEHR path can be found elsewhere [7].
Herein, we briefly introduce its basic syntax.

A general pattern of the openEHR path syntax starts with a
slash and followed by an attribute name of an object defined by
the RM, and followed by another slash and attribute name and
so on if there are multiple attributes involved, e.g. /ehr_id.

Another pattern of the path is a subset of the XPath syntax for
predicates with a small number of short-cuts, i.e. archetype
path. This path utilises an archetype ID or archetype node ID
(i.e. at code, such as at0006) to identify an object. The example

shown in Figure 1 uses the openEHR path syntax to locate both
systolic and diastolic value in the blood pressure archetype.

Predicates

A predicate pattern is delimited by square brackets ([]). The
path predicate has two operands and an operator. The operands
are either an RM class attribute, an openEHR path or data
value, such as a string or integer. A parameter name prefixed
with a $ symbol can be used instead of a data value, which is
substituted for a real data value at run time, e.g.
ehr_id=$ehrUid shown in Figure 1. The operator can be =, >,
<, >=, <=, or !=.

The archetype node ID predicates are a shortcut of a path
predicate, which include either an archetype ID or archetype
node ID. The archetype node ID predicates can also use a
parameter name for the archetype node ID value, e.g.
[$compositionArchetypeId]. The archetype node ID predicate
shortcut is equivalent to a long-form path predicate with a left
operand of archetype_node_id, and an operator of =. For
example COMPOSTION c[openEHR-EHR-COMPOSITION-
encounter.v1] shown in Figure 1 is equivalent to
COMPOSTION c[archetype_node_id = ‘openEHR-EHR-
COMPOSITION-encounter.v1’].

EQL variables

All variables must have a RM class type assigned and they
must be defined in the FROM clause, e.g. character c and o
shown in the FROM clause of Figure 1 are EQL variables.
EQL variables need to be declared when other clauses need a
reference to them.

FROM clause

A FROM clause represents the data source for the query. It
starts with the keyword – FROM, followed by a class
expression indicating the RM classes, containment constraints
and object identifying criteria used to constrain the data source
for the query (refer to Figure 1).

For the openEHR RM, the classes declared in the FROM
clause may include EHR, COMPOSITION, entry classes (e.g.
OBSERVATION), and data structure class (e.g. ITEM_LIST).

Class expressions

An EQL class expression consists of a RM class name, an EQL
variable (optional), and an optional class predicate. The class

Figure 1: A typical EQL statement

SELECT o/data[at0001]/events[at0006]/data[at0003]/items[at0004]/value AS Systolic,

o/data[at0001]/events[at0006]/data[at0003]/items[at0005]/value AS Diastolic

FROM EHR [ehr_id=$ehrUid]

CONTAINS COMPOSITION c [openEHR-EHR-COMPOSITION.encounter.v1]

CONTAINS OBSERVATION o [openEHR-EHR-OBSERVATION.blood_pressure.v1]

WHERE o/data[at0001]/events[at0006]/data[at0003]/items[at0004]/value/value >= 140 OR

o/data[at0001]/events[at0006]/data[at0003]/items[at0005]/value/value >= 90

Select clause

Where clause

Identified path - systolic

Containment

Archetype predicate

Naming retrieved results

From clause Class expression

predicate further constrains the objects used as the query
source and is normally applied to the archetype node ID or
unique object ID class attributes.

Containment is indicated in EQL using the CONTAINS
keyword between two class expressions. The left class
expression indicates the parent object of the right class
expression.

Identified paths

Identified paths are used to locate data items within an
archetyped RM class. The identified path starts with an EQL
variable that is declared within the class expression. This is
followed by a slash and an openEHR path. The expression –
o/data/[at0001]/event/…/value – shown in Figure 1 is an
example of an identified path.

WHERE clause

A where clause is used to represent further criteria applied to
the data items within the objects declared in the FROM clause.
A WHERE clause starts with the keyword – WHERE, followed
by a criteria expression. It consists of two operands and an
operator. The operands may be an identified path or data value,
such as a string or integer. A parameter name prefixed with a $
symbol can be used instead of a data value and substituted at
run time. The operator can be =, >, <, >=, <=, or !=. Multiple
criteria expressions can be combined using Boolean operators:
AND, OR, XOR, and NOT.

SELECT clause

A SELECT clause starts with the keyword – SELECT, and
followed by a set of identified paths. The set of paths are
separated using a comma (see Figure 1).

Results naming

EQL allows users to rename the returned items specified in the
SELECT clause. The keyword is AS, followed by the
specified name, e.g. AS Systolic shown in Figure 1 SELECT
clause.

ORDER BY clause

An ORDER BY clause starts with the keywords – ORDER
BY, followed by a set of identified paths indicating the data
items used to sort the returned result set. The keywords
ASCENDING and DESCENDING (and abbreviations, ASC
and DESC) can be used after each identified path as per SQL.

Arithmetic Functions

A set of arithmetic functions, such as addition, subtraction,
multiplication, and division can also be used in EQL. The use
of these functions is the same as SQL, and is not described
here.

TIMEWINDOW clause

TIMEWINDOW is an addition query clause used in EQL
to constrain the query to data that was available in the system
within the specified time criteria. This supports a time-
based logical system rollback allowing a query to be
executed as though it was performed at that specified time,
which is essential for medico-legal reporting. It starts with the
keyword – TIMEWINDOW, and followed by a string
compatible with the ISO 8601 representation of time interval.

The first example below constrains the query source to data
committed to the system before 2006-01-01. The second
example constrains the query source to data committed within
the period of two years before 2006-01-01.

1) TIMEWINDOW /2006-01-01

2) TIMEWINDOW P2Y/2006-01-01

Clinical scenarios

To illustrate the use of the EQL syntax, this section provides
the EQL expressions for two typical clinical scenarios.

Scenario one

Scenario description

Get the number of all patients with diabetes who have HbA1c
results greater than 7.0 in last 12 months.

EQL expression

Scenario two

Scenario description

Get all HbA1c observations that have been done in the last 12
months for a specific patient.

EQL expression

SELECT COUNT(e/ehr_id)

FROM EHR e

 CONTAINS

 (COMPOSITION c

 [openEHR-EHR-COMPOSITION.problem_list.v1]

 CONTAINS EVALUATION e

 [openEHR-EHR-EVALUATION.problem-
diagnosis.v1]

 AND

 COMPOSITION c1

 [openEHR-EHR-COMPOSITION.report.v1]

 CONTAINS OBSERVATION o

 [openEHR-EHR-OBSERVATION.laboratory-
hba1c.v1])

WHERE

 e/data/items[at0002.1]/value/value=’diabetes
mellitus’ AND

 c1/context/other_context/items[at0006]/

 items[at0013]/value > current-date() -P1Y AND

 o/data/events[at0002]/data/items[at0013.1]

 /value/numerator > 7

SELECT o
FROM EHR e[ehr_id=$ehrId]
 CONTAINS COMPOSITION c
 [openEHR-EHR-COMPOSITION.report.v1]
 CONTAINS OBSERVATION o
 [openEHR-EHR-OBSERVATION.laboratory-hba1c.v1]
WHERE
c/context/other_context[at0001]/items[at0006]/
items[at0013]/value > current-date()-1PY

Scenario three

Scenario description

Get a patient’s current medication list

EQL expression

Discussions

This paper has introduced EQL – a declarative query language
developed for querying openEHR-based EHRs by utilising the
openEHR path mechanisms and unique containment syntax.
However, the EQL syntax is not specific to the openEHR RM
and can be used for any archetype-based information system. It
could be used as a common query language for disparate
archetype-based applications. The EQL will be submitted to
the openEHR foundation as a candidate openEHR query
language.

EQL implementation

Ocean Informatics Ptd Lty has implemented the components to
process the EQL within the OceanEHR suite of EHR tools.
These components include an EQL parser, the EHR query
object model and a query processor. The implementation does
not currently support all features of the EQL. However it has
demonstrated the power and flexibility of using a common RM,
archetypes and EQL, independent from the underlying system
implementation, to retrieve any data set from an EHR.

The EQL is not easily understood by health professionals due
to the computer-oriented openEHR path syntax used in EQL.
An EQL query editor, which allows users to generate and edit
EQL statements, has been developed to empower clinicians
with fine-grained access to their EHR data. The query editor
provides users with access to an archetype repository to build
FROM containment constraints and a tree representation of
RM attributes and archetype structures used to set WHERE
criteria, SELECT data items and ORDER BY preferences. The
tool can then execute the generated query and display the
returned results without the user seeing or knowing how to
write an EQL statement.

Future directions

The EQL continues to be developed based on requirements
from additional clinical query scenarios. New EQL features
may need to be provided, such as statistical, string pattern
matching and user-defined functions. Existential (∃) and
universal (∀) quantifiers may be also required.

Other research areas may include 1) explore how the EQL
supports clinical decision support technologies, e.g. clinical
guidelines presentation; 2) investigate the integration of EQL
with clinical terminology servers; and 3) conduct field trials

using the EQL to represent common clinical queries to retrieve
openEHR-based EHR data sets.

Conclusion

The use of a common RM and archetypes supports the sharing
of EHR data, and with the addition of a companion query
language, such as EQL, semantic interoperability of EHR
information is much closer.

Acknowledgements

We extend our thanks to Lisa Thurston for her support,
including the development of the EhrView component – a
generic EHR viewer – that uses EQL for retrieving EHR data.

References

[1]. National E-Health Transition Authority (NEHTA).
Acronyms, Abbreviations & Glossary of Terms in
Publications. In: eds. National E-Health Transition
Authority (NEHTA), 2005.

[2]. National E-Health Transition Authority (NEHTA). Review
of Shared Electronic Health Records Standards in
Publications. In: eds. National E-Health Transition
Authority (NEHTA), 2006.

[3]. Amatayakul M. When EHRs are a-ok. Healthcare financial
management, 2006: 60(2): 146-148.

[4]. Nadkarni PM and Brandt C. Data Extraction and Ad Hoc
Query of an Entity-- Attribute-- Value Database. J Am
Med Inform Assoc, 1998: 5(6): 511-527.

[5]. W3C.2006. XQuery 1.0: An XML Query Language.
http://www.w3.org/TR/xquery/, accessed on 17 Oct. 2006

[6]. Johnson S and Chatziantoniou D. Extended SQL for
manipulating clinical warehouse data. Proceedings / AMIA
... Annual Symposium, 1999: 819-23.

[7]. Beale T and Heard S. Archetype Definitions and Principles
in The openEHR foundation release 1.0. In: Beale T and
Heard S, eds. The openEHR foundation, 2005.

[8]. Beale T and Heard S. openEHR Architecture: Architecture
Overview in The openEHR foundation release 1.0.1. In:
Beale T and Heard S, eds. openEHR Foundation, 2006.

Address for correspondence

Dr Chunlan Ma

Clinical Informatics Consultant

Chunlan.ma@oceaninformatics.biz

Heath Frankel

Product Development Manager

Heath.frankel@oceaninformatics.biz

SELECT c
FROM EHR e[ehr_id=$ehrId]
 CONTAINS COMPOSITION c
 [openEHR-EHR-COMPOSITION.medication_list.v1]
WHERE c/name/value= ‘current medication list’

http://www.w3.org/TR/xquery/
mailto:Chunlan.ma@oceaninformatics.biz
mailto:Heath.frankel@oceaninformatics.biz

